1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of the Volatile Flavor Compounds of Pomegranate Seeds at Different Processing Temperatures by GC-IMS

      , , , ,
      Molecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study sought to reveal the mechanism of flavor generation when pomegranate seeds are processed, as well as the contribution of volatile organic components (VOCs) to flavor formation. Gas chromatography–ion mobility spectrometry (GC-IMS), combined with relative odor activity (ROAV) and statistical methods, was used for the analysis. The results showed that 54 compounds were identified from 70 peaks that appeared in the GC-IMS spectrum. Then, the ROAV results showed 17 key volatile components in processing pomegranate seeds, and 7 flavor components with large differential contributions were screened out using statistical methods. These included γ-butyrolactone, (E)-3-penten-2-one (dimer), pentanal, 1-propanethiol, octanal, and ethyl valerate (monomer). It is suggested that lipid oxidation and the Maillard reaction may be the main mechanisms of flavor formation during the processing of pomegranate seeds. Furthermore, this study lays the experimental and theoretical foundations for further research on the development of flavor products from pomegranate seeds.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          Comparison of Aroma-Active Volatiles in Oolong Tea Infusions Using GC–Olfactometry, GC–FPD, and GC–MS

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of Jinhua ham aroma profiles in specific to aging time by gas chromatography-ion mobility spectrometry (GC-IMS).

            A rapid method for analyzing of Jinhua ham samples in different aging time was created based on gas chromatography-ion mobility spectrometry (GC-IMS). The GC-IMS chromatograph provided information regarding the identities and intensities of 37 volatile flavor compounds, including both monomers and dimers. Principal component analysis (PCA) effectively distinguished the variation in the aroma of the Jinhua hams specific to aging time. Alcohol (octanol, 2-methylbutanol), ketones (2-butanone, 2-hexanone, 2-heptanone, acetoin, gamma-butyrolactone), aldehydes (butanal, 3-methylbutanal), ester (propyl acetate) and carboxylic acids (3-methylbutanoic acid) were considered as the main volatile compounds in the Jinhua ham samples. This GC-IMS method, then, proved to be feasible for the rapid and comprehensive detection of volatile compounds in Jinhua hams, and multivariance analysis (i.e.: PCA) was able to provide information related to aging time.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deep-fried flavor: characteristics, formation mechanisms, and influencing factors

              Deep-fried flavor, involving fatty, sweet, burnt, and grilled odors, is an important factor leading to the popularity of deep-fried foods. Comparing with flavors from other conventional and innovative thermal treatments, deep-fried flavor is characterized by a rich variety of volatile species (e.g. aldehydes, alcohols, ketones, hydrocarbons, carboxylic acids, furans, pyrazines, and pyridines), intricate formation mechanisms, and a stronger attraction to consumers. By means of comprehensively literature research, this article critically reviews deep-fried flavor deriving from lipid oxidation, Maillard reaction, hydrolysis and amino acid degradation, with a special emphasis to discuss the involvement of lipid oxidation products in the Maillard pathway to form fried volatiles via secondary processes (e.g. fragmentation, rearrangement, and degradation). The reactions are interacted and influenced by various factors, such as frying oils (e.g. fatty acid composition and oil type), food components (e.g. amino acid and sugar), frying conditions (e.g. oxygen concentration, frying time, temperature, pH, and moisture content), and frying types (e.g. vacuum frying and air frying). Overall, well understanding of chemistry origins of deep-fried volatiles is meaningful to economically manipulate the frying process, optimize the fried flavor, and improve the safety and consumer acceptance of deep-fried foods.
                Bookmark

                Author and article information

                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                March 2023
                March 17 2023
                : 28
                : 6
                : 2717
                Article
                10.3390/molecules28062717
                10052118
                36985689
                ea3abe4b-612d-4778-ae74-ed9ef0064f50
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article