36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An anatomical and functional topography of human auditory cortical areas

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While advances in magnetic resonance imaging (MRI) throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla). Importantly, we illustrate that—whereas a group-based approach to analyze functional (tonotopic) maps is appropriate to highlight the main tonotopic axis—the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e., myelination) as well as of functional properties (e.g., broadness of frequency tuning) is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post-mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          Speech recognition with primarily temporal cues.

          Nearly perfect speech recognition was observed under conditions of greatly reduced spectral information. Temporal envelopes of speech were extracted from broad frequency bands and were used to modulate noises of the same bandwidths. This manipulation preserved temporal envelope cues in each band but restricted the listener to severely degraded information on the distribution of spectral energy. The identification of consonants, vowels, and words in simple sentences improved markedly as the number of bands increased; high speech recognition performance was obtained with only three bands of modulated noise. Thus, the presentation of a dynamic temporal pattern in only a few broad spectral regions is sufficient for the recognition of speech.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human brain: left-right asymmetries in temporal speech region.

            We have found marked anatomical asymmetries between tile upper surfaces of the human right and left temporal lobes. The planum temporale (the area behind Hesch's gyrus) is larger on the left in 65 percent of brains; on the right it is larger in only 11 percent. The left planum is on the average one-third longer than the planum. This area makes up part of the temporal speech cortex, whose importance is well established on the basis of both anatomical findings in aphasic patients ans cortical stimulation at operation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging.

              The borders of human visual areas V1, V2, VP, V3, and V4 were precisely and noninvasively determined. Functional magnetic resonance images were recorded during phase-encoded retinal stimulation. This volume data set was then sampled with a cortical surface reconstruction, making it possible to calculate the local visual field sign (mirror image versus non-mirror image representation). This method automatically and objectively outlines area borders because adjacent areas often have the opposite field sign. Cortical magnification factor curves for striate and extrastriate cortical areas were determined, which showed that human visual areas have a greater emphasis on the center-of-gaze than their counterparts in monkeys. Retinotopically organized visual areas in humans extend anteriorly to overlap several areas previously shown to be activated by written words.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                29 July 2014
                2014
                : 8
                : 225
                Affiliations
                [1] 1Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands
                [2] 2Maastricht Brain Imaging Center, Maastricht University Maastricht, Netherlands
                [3] 3Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Minneapolis, MN, USA
                Author notes

                Edited by: Yukiko Kikuchi, Newcastle University Medical School, UK

                Reviewed by: Simon Baumann, Newcastle University, UK; Li Su, University of Cambridge, UK

                *Correspondence: Elia Formisano, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, Oxfordlaan 55, Maastricht, 6229 EV, Netherlands e-mail: e.formisano@ 123456maastrichtuniversity.nl

                This article was submitted to Auditory Cognitive Neuroscience, a section of the journal Frontiers in Neuroscience.

                Article
                10.3389/fnins.2014.00225
                4114190
                25120426
                ea26151e-d4e0-4d5e-aab8-1844fe76b62e
                Copyright © 2014 Moerel, De Martino and Formisano.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 May 2014
                : 08 July 2014
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 115, Pages: 14, Words: 12995
                Categories
                Psychology
                Review Article

                Neurosciences
                human auditory cortex,tonotopy,ultra-high field fmri,cytoarchitectonic parcellation,auditory cortical areas

                Comments

                Comment on this article