24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuromodulation techniques – From non-invasive brain stimulation to deep brain stimulation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the past 30 years, the field of neuromodulation has witnessed remarkable advancements. These developments encompass a spectrum of techniques, both non-invasive and invasive, that possess the ability to both probe and influence the central nervous system. In many cases neuromodulation therapies have been adopted into standard care treatments. Transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) are the most common non-invasive methods in use today. Deep brain stimulation (DBS), spinal cord stimulation (SCS), and vagus nerve stimulation (VNS), are leading surgical methods for neuromodulation. Ongoing active clinical trials using are uncovering novel applications and paradigms for these interventions.

          Related collections

          Most cited references205

          • Record: found
          • Abstract: found
          • Article: not found

          Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.

          In this paper we demonstrate in the intact human the possibility of a non-invasive modulation of motor cortex excitability by the application of weak direct current through the scalp. Excitability changes of up to 40 %, revealed by transcranial magnetic stimulation, were accomplished and lasted for several minutes after the end of current stimulation. Excitation could be achieved selectively by anodal stimulation, and inhibition by cathodal stimulation. By varying the current intensity and duration, the strength and duration of the after-effects could be controlled. The effects were probably induced by modification of membrane polarisation. Functional alterations related to post-tetanic potentiation, short-term potentiation and processes similar to postexcitatory central inhibition are the likely candidates for the excitability changes after the end of stimulation. Transcranial electrical stimulation using weak current may thus be a promising tool to modulate cerebral excitability in a non-invasive, painless, reversible, selective and focal way.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Theta burst stimulation of the human motor cortex.

            It has been 30 years since the discovery that repeated electrical stimulation of neural pathways can lead to long-term potentiation in hippocampal slices. With its relevance to processes such as learning and memory, the technique has produced a vast literature on mechanisms of synaptic plasticity in animal models. To date, the most promising method for transferring these methods to humans is repetitive transcranial magnetic stimulation (rTMS), a noninvasive method of stimulating neural pathways in the brain of conscious subjects through the intact scalp. However, effects on synaptic plasticity reported are often weak, highly variable between individuals, and rarely last longer than 30 min. Here we describe a very rapid method of conditioning the human motor cortex using rTMS that produces a controllable, consistent, long-lasting, and powerful effect on motor cortex physiology and behavior after an application period of only 20-190 s.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018)

              A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neurotherapeutics
                Neurotherapeutics
                Neurotherapeutics
                Elsevier
                1933-7213
                1878-7479
                09 February 2024
                April 2024
                09 February 2024
                : 21
                : 3
                : e00330
                Affiliations
                [a ]Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
                [b ]Krembil Research Institute, University Health Network, Toronto, ON, Canada
                [c ]Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto, ON, Canada
                Author notes
                []Corresponding author. lozano@ 123456uhnresearch.ca
                [1]

                Contributed equally to the manuscript.

                Article
                S1878-7479(24)00016-3 e00330
                10.1016/j.neurot.2024.e00330
                11103220
                38340524
                ea20dccb-af19-44ee-8dc3-bd336b03dc6b
                © 2024 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 11 October 2023
                : 14 January 2024
                : 28 January 2024
                Categories
                Review

                Neurology
                transcranial magnetic stimulation,transcranial direct current stimulation,transcranial alternating current stimulation,deep brain stimulation,spinal cord stimulation,vagus nerve stimulation

                Comments

                Comment on this article