There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Subthalamic stimulation reduces motor disability and improves quality of life in patients with advanced Parkinson's disease who have severe levodopa-induced motor complications. We hypothesized that neurostimulation would be beneficial at an earlier stage of Parkinson's disease. In this 2-year trial, we randomly assigned 251 patients with Parkinson's disease and early motor complications (mean age, 52 years; mean duration of disease, 7.5 years) to undergo neurostimulation plus medical therapy or medical therapy alone. The primary end point was quality of life, as assessed with the use of the Parkinson's Disease Questionnaire (PDQ-39) summary index (with scores ranging from 0 to 100 and higher scores indicating worse function). Major secondary outcomes included parkinsonian motor disability, activities of daily living, levodopa-induced motor complications (as assessed with the use of the Unified Parkinson's Disease Rating Scale, parts III, II, and IV, respectively), and time with good mobility and no dyskinesia. For the primary outcome of quality of life, the mean score for the neurostimulation group improved by 7.8 points, and that for the medical-therapy group worsened by 0.2 points (between-group difference in mean change from baseline to 2 years, 8.0 points; P=0.002). Neurostimulation was superior to medical therapy with respect to motor disability (P<0.001), activities of daily living (P<0.001), levodopa-induced motor complications (P<0.001), and time with good mobility and no dyskinesia (P=0.01). Serious adverse events occurred in 54.8% of the patients in the neurostimulation group and in 44.1% of those in the medical-therapy group. Serious adverse events related to surgical implantation or the neurostimulation device occurred in 17.7% of patients. An expert panel confirmed that medical therapy was consistent with practice guidelines for 96.8% of the patients in the neurostimulation group and for 94.5% of those in the medical-therapy group. Subthalamic stimulation was superior to medical therapy in patients with Parkinson's disease and early motor complications. (Funded by the German Ministry of Research and others; EARLYSTIM ClinicalTrials.gov number, NCT00354133.).
Objective Deep brain stimulation (DBS) surgery has increasingly been performed for the treatment of movement disorders and is associated with a wide array of complications. We aimed to present our experience and discuss strategies to minimize adverse events in light of this contemporary series and others in the literature. Methods A retrospective chart review was conducted to collect data on age, sex, indication, operation date, surgical technique, and perioperative and late complications. Results A total of 181 patients (113 males, 68 females) underwent DBS implantation surgery (359 leads) in the past six years. Indications and targets were as follows: Parkinson's disease (STN) (n=159), dystonia (GPi) (n=13), and essential tremor (Vim) (n=9). Mean age was 55.2 ± 11.7 (range 9–74) years. Mean follow-up duration was 3.4 ± 1.6 years. No mortality or permanent morbidity was observed. Major perioperative complications were confusion (6.6%), intracerebral hemorrhage (2.2%), stroke (1.1%), and seizures (1.1%). Long-term adverse events included wound (7.2%), mostly infection, and hardware-related (5.5%) complications. Among several factors, only surgical experience was found to be related with overall complication rates (early period: 31% versus late period: 10%; p=0.001). Conclusion The rates of both early and late complications of DBS surgery are acceptably low and decrease significantly with cumulative experience.
Epilepsy is a common and debilitating neurological disorder, and approximately one-third of affected individuals have ongoing seizures despite appropriate trials of two anti-seizure medications. This population with drug-resistant epilepsy (DRE) may benefit from neurostimulation approaches, such as vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). In some patient populations, these techniques are FDA-approved for treating DRE. VNS is used as adjuvant therapy for children and adults. Acting via the vagus afferent network, VNS modulates thalamocortical circuits, reducing seizures in approximately 50 % of patients. RNS uses an adaptive (closed-loop) system that records intracranial EEG patterns to activate the stimulation at the appropriate time, being particularly well-suited to treat seizures arising within eloquent cortex. For DBS, the most promising therapeutic targets are the anterior and centromedian nuclei of the thalamus, with anterior nucleus DBS being used for treating focal and secondarily generalized forms of DRE and centromedian nucleus DBS being applied for treating generalized epilepsies such as Lennox-Gastaut syndrome. Here, we discuss the indications, advantages and limitations of VNS, DBS and RNS in treating DRE and summarize the spatial distribution of neuroimaging observations related to epilepsy and stimulation using NeuroQuery and NeuroSynth.
[1]Department of Neurosurgery, University of North Carolina, Chapel Hill, NC, USA
[2]Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement
Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
[3]Division of Neurology, University of Toronto, Toronto, Ontario, Canada
[4]Krembil Brain Institute, Toronto, Ontario, Canada
[5]CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Canada
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.