Advances in stem cell technology have provided three approaches to address the demanding issue of the treatment of intractable neurological disease. One of the approaches is the screening of compounds attenuating pathological phenotypes in stem-cell based models. A second approach consists of exogenous-targeted cell supplementation to the lesion with stem cell-derived differentiated cells. A third approach involves in vivo direct programming to transdifferentiate endogenous somatic cells and to boost CNS tissue remodeling. In this review, we outline research advances in stem cell technology of direct reprogramming in vitro and in vivo and discuss the future challenge of tissue remodeling by neural transdifferentiation.