75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Review on iron and its importance for human health

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is well-known that deficiency or over exposure to various elements has noticeable effects on human health. The effect of an element is determined by several characteristics, including absorption, metabolism, and degree of interaction with physiological processes. Iron is an essential element for almost all living organisms as it participates in a wide variety of metabolic processes, including oxygen transport, deoxyribonucleic acid (DNA) synthesis, and electron transport. However, as iron can form free radicals, its concentration in body tissues must be tightly regulated because in excessive amounts, it can lead to tissue damage. Disorders of iron metabolism are among the most common diseases of humans and encompass a broad spectrum of diseases with diverse clinical manifestations, ranging from anemia to iron overload, and possibly to neurodegenerative diseases. In this review, we discuss the latest progress in studies of iron metabolism and bioavailability, and our current understanding of human iron requirement and consequences and causes of iron deficiency. Finally, we discuss strategies for prevention of iron deficiency.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial.

          Anaemia caused by iron deficiency is common in children younger than age 5 years in eastern Africa. However, there is concern that universal supplementation of children with iron and folic acid in areas of high malaria transmission might be harmful. We did a randomised, placebo-controlled trial, of children aged 1-35 months and living in Pemba, Zanzibar. We assigned children to daily oral supplementation with: iron (12.5 mg) and folic acid (50 mug; n=7950), iron, folic acid, and zinc (n=8120), or placebo (n=8006); children aged 1-11 months received half the dose. Our primary endpoints were all-cause mortality and admission to hospital. Analyses were by intention to treat. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN59549825. The iron and folic acid-containing groups of the trial were stopped early on Aug 19, 2003, on the recommendation of the data and safety monitoring board. To this date, 24 076 children contributed a follow-up of 25,524 child-years. Those who received iron and folic acid with or without zinc were 12% (95% CI 2-23, p=0.02) more likely to die or need treatment in hospital for an adverse event and 11% (1-23%, p=0.03) more likely to be admitted to hospital; there were also 15% (-7 to 41, p=0.19) more deaths in these groups. Routine supplementation with iron and folic acid in preschool children in a population with high rates of malaria can result in an increased risk of severe illness and death. In the presence of an active programme to detect and treat malaria and other infections, iron-deficient and anaemic children can benefit from supplementation. However, supplementation of those who are not iron deficient might be harmful. As such, current guidelines for universal supplementation with iron and folic acid should be revised.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Regulation of cellular iron metabolism

            Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron–sulfur clusters, which are integral parts of several metalloproteins, and excess iron is stored and detoxified in cytosolic ferritin. Iron metabolism is controlled at different levels and by diverse mechanisms. The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE (iron-responsive element)/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Iron bioavailability and dietary reference values.

              Iron differs from other minerals because iron balance in the human body is regulated by absorption only because there is no physiologic mechanism for excretion. On the basis of intake data and isotope studies, iron bioavailability has been estimated to be in the range of 14-18% for mixed diets and 5-12% for vegetarian diets in subjects with no iron stores, and these values have been used to generate dietary reference values for all population groups. Dietary factors that influence iron absorption, such as phytate, polyphenols, calcium, ascorbic acid, and muscle tissue, have been shown repeatedly to influence iron absorption in single-meal isotope studies, whereas in multimeal studies with a varied diet and multiple inhibitors and enhancers, the effect of single components has been, as expected, more modest. The importance of fortification iron and food additives such as erythorbic acid on iron bioavailability from a mixed diet needs clarification. The influence of vitamin A, carotenoids, and nondigestible carbohydrates on iron absorption and the nature of the "meat factor" remain unresolved. The iron status of the individual and other host factors, such as obesity, play a key role in iron bioavailability, and iron status generally has a greater effect than diet composition. It would therefore be timely to develop a range of iron bioavailability factors based not only on diet composition but also on subject characteristics, such as iron status and prevalence of obesity.
                Bookmark

                Author and article information

                Journal
                J Res Med Sci
                J Res Med Sci
                JRMS
                Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences
                Medknow Publications & Media Pvt Ltd (India )
                1735-1995
                1735-7136
                February 2014
                : 19
                : 2
                : 164-174
                Affiliations
                [1]Department of Environmental Systems Science, Institute of Terrestrial Ecosystem, Swiss Federal Institute of Technology, Zurich, Switzerland
                [1 ]Department of Health Sciences and Technology, Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Zurich, Switzerland
                [2 ]Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
                Author notes
                Address for correspondence: Prof. Roya Kelishadi, Child Growth and Development Research Center Isfahan University of Medical Sciences, Isfahan, Iran. E-mail: kelishadi@ 123456med.mui.ac.ir
                Article
                JRMS-19-164
                3999603
                24778671
                e9acd1be-91cf-466a-9a92-32be8f8cfa12
                Copyright: © Journal of Research in Medical Sciences

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 08 June 2013
                : 03 November 2013
                : 27 November 2013
                Categories
                Review Article

                Medicine
                anemia,human iron requirement,iron bioavailability,iron deficiency,iron metabolism
                Medicine
                anemia, human iron requirement, iron bioavailability, iron deficiency, iron metabolism

                Comments

                Comment on this article