65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Possibilities of direct introgression from Brassica napus to B. juncea and indirect introgression from B. napus to related Brassicaceae through B. juncea

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The impact of genetically modified canola ( Brassica napus) on biodiversity has been examined since its initial stage of commercialization. Various research groups have extensively investigated crossability and introgression among species of Brassicaceae. B. rapa and B. juncea are ranked first and second as the recipients of cross-pollination and introgression from B. napus, respectively. Crossability between B. napus and B. rapa has been examined, specifically in terms of introgression from B. napus to B. rapa, which is mainly considered a weed in America and European countries. On the other hand, knowledge on introgression from B. napus to B. juncea is insufficient, although B. juncea is recognized as the main Brassicaceae weed species in Asia. It is therefore essential to gather information regarding the direct introgression of B. napus into B. juncea and indirect introgression of B. napus into other species of Brassicaceae through B. juncea to evaluate the influence of genetically modified canola on biodiversity. We review information on crossability and introgression between B. juncea and other related Brassicaseae in this report.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures

          Background Unreduced gametes (gametes with the somatic chromosome number) may provide a pathway for evolutionary speciation via allopolyploid formation. We evaluated the effect of genotype and temperature on male unreduced gamete formation in Brassica allotetraploids and their interspecific hybrids. The frequency of unreduced gametes post-meiosis was estimated in sporads from the frequency of dyads or giant tetrads, and in pollen from the frequency of viable giant pollen compared with viable normal pollen. Giant tetrads were twice the volume of normal tetrads, and presumably resulted from pre-meiotic doubling of chromosome number. Giant pollen was defined as pollen with more than 1.5 × normal diameter, under the assumption that the doubling of DNA content in unreduced gametes would approximately double the pollen cell volume. The effect of genotype was assessed in five B. napus, two B. carinata and one B. juncea parents and in 13 interspecific hybrid combinations. The effect of temperature was assessed in a subset of genotypes in hot (day/night 30°C/20°C), warm (25°C/15°C), cool (18°C/13°C) and cold (10°C/5°C) treatments. Results Based on estimates at the sporad stage, some interspecific hybrid genotypes produced unreduced gametes (range 0.06 to 3.29%) at more than an order of magnitude higher frequency than in the parents (range 0.00% to 0.11%). In nine hybrids that produced viable mature pollen, the frequency of viable giant pollen (range 0.2% to 33.5%) was much greater than in the parents (range 0.0% to 0.4%). Giant pollen, most likely formed from unreduced gametes, was more viable than normal pollen in hybrids. Two B. napus × B. carinata hybrids produced 9% and 23% unreduced gametes based on post-meiotic sporad observations in the cold temperature treatment, which was more than two orders of magnitude higher than in the parents. Conclusions These results demonstrate that sources of unreduced gametes, required for the triploid bridge hypothesis of allopolyploid evolution, are readily available in some Brassica interspecific hybrid genotypes, especially at cold temperatures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome structure affects the rate of autosyndesis and allosyndesis in AABC, BBAC and CCAB Brassica interspecific hybrids.

            Gene introgression into allopolyploid crop species from diploid or polyploid ancestors can be accomplished through homologous or homoeologous chromosome pairing during meiosis. We produced trigenomic Brassica interspecific hybrids (genome complements AABC, BBAC and CCAB) from the amphidiploid species Brassica napus (AACC), Brassica juncea (AABB) and Brassica carinata (BBCC) in order to test whether the structure of each genome affects frequencies of homologous and homoeologous (both allosyndetic and autosyndetic) pairing during meiosis. AABC hybrids produced from three genotypes of B. napus were included to assess the genetic control of homoeologous pairing. Multi-colour fluorescent in situ hybridisation was used to quantify homologous pairing (e.g. A-genome bivalents in AABC), allosyndetic associations (e.g. B-C in AABC) and autosyndetic associations (e.g. B-B in AABC) at meiosis. A high percentage of homologous chromosomes formed pairs (97.5-99.3%), although many pairs were also involved in autosyndetic and allosyndetic associations. Allosyndesis was observed most frequently as A-C genome associations (mean 4.0 per cell) and less frequently as A-B genome associations (0.8 per cell) and B-C genome associations (0.3 per cell). Autosyndesis occurred most frequently in the haploid A genome (0.75 A-A per cell) and least frequently in the haploid B genome (0.13 B-B per cell). The frequency of C-C autosyndesis was greater in BBAC hybrids (0.75 per cell) than in any other hybrid. The frequency of A-B, A-C and B-C allosyndesis was affected by the genomic structure of the trigenomic hybrids. Frequency of allosyndesis was also influenced by the genotype of the B. napus paternal parent for the three AABC (B. juncea × B. napus) hybrid types. Homoeologous pairing between the Brassica A, B and C genomes in interspecific hybrids may be influenced by complex interactions between genome structure and allelic composition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Feral genetically modified herbicide tolerant oilseed rape from seed import spills: are concerns scientifically justified?

              One of the concerns surrounding the import (for food and feed uses or processing) of genetically modified herbicide tolerant (GMHT) oilseed rape is that, through seed spillage, the herbicide tolerance (HT) trait will escape into agricultural or semi-natural habitats, causing environmental or economic problems. Based on these concerns, three EU countries have invoked national safeguard clauses to ban the marketing of specific GMHT oilseed rape events on their territory. However, the scientific basis for the environmental and economic concerns posed by feral GMHT oilseed rape resulting from seed import spills is debatable. While oilseed rape has characteristics such as secondary dormancy and small seed size that enable it to persist and be redistributed in the landscape, the presence of ferals is not in itself an environmental or economic problem. Crucially, feral oilseed rape has not become invasive outside cultivated and ruderal habitats, and HT traits are not likely to result in increased invasiveness. Feral GMHT oilseed rape has the potential to introduce HT traits to volunteer weeds in agricultural fields, but would only be amplified if the herbicides to which HT volunteers are tolerant were used routinely in the field. However, this worst-case scenario is most unlikely, as seed import spills are mostly confined to port areas. Economic concerns revolve around the potential for feral GMHT oilseed rape to contribute to GM admixtures in non-GM crops. Since feral plants derived from cultivation (as distinct from import) occur at too low a frequency to affect the coexistence threshold of 0.9% in the EU, it can be concluded that feral GMHT plants resulting from seed import spills will have little relevance as a potential source of pollen or seed for GM admixture. This paper concludes that feral oilseed rape in Europe should not be routinely managed, and certainly not in semi-natural habitats, as the benefits of such action would not outweigh the negative effects of management.
                Bookmark

                Author and article information

                Journal
                Breed Sci
                Breed. Sci
                Breeding Science
                Japanese Society of Breeding
                1344-7610
                1347-3735
                May 2014
                May 2014
                : 64
                : 1
                : 74-82
                Affiliations
                [1 ]Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences (NIAS) , 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan
                [2 ]Faculty of Life and Environmental Sciences, University of Tsukuba , 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
                Author notes
                [* ]Corresponding author (e-mail: tabei@ 123456affrc.go.jp )

                Communicated by T. Nishio

                Article
                64_74
                10.1270/jsbbs.64.74
                4031112
                e9662624-72dc-488a-baee-db43af5ae604
                Copyright © 2014 by JAPANESE SOCIETY OF BREEDING

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 06 January 2014
                : 31 March 2014
                Categories
                Review

                Animal agriculture
                introgression,genetically modified,brassica napus,brassica juncea,brassicaceae,crossability

                Comments

                Comment on this article