0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pressurized liquid extraction of glucosinolates from Camelina sativa (L.) Crantz by-products: Process optimization and biological activities of green extract

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • The Camelina sativa by-products as source of glucosinolates was explored.

          • A higher bioactive content can be obtained by unconventional developed method.

          • Optimization of extraction parameter by response surface design.

          • Glucohirsutin were identified by UPLC-UV-HRMS/MS for the first time in Camelina sativa.

          Abstract

          The cultivation of Camelina sativa (L.) Crantz is rapidly increasing due to oil production resulting in a substantial volume of by-products, which still have an interesting composition in secondary metabolites, especially glucosinolates. Therefore, a green extraction procedure of glucosinolates by Pressurised Liquid Extraction was developed and optimized using a chemometric approach. Furthermore, the glucosinolates were purified by solid phase extraction, and a preliminary study on bioaccessibility and bioavailability study was carried out to evaluate the resistance of the glucosinolates to the digestive process. The application of pressurised liquid extraction to the recovery of glucosinolates from camelina sativa by-product, is a green, automatic, and rapid method, representing a valid alternative to conventional extraction method to obtain ingredients for food industries.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          A standardised static in vitro digestion method suitable for food - an international consensus.

          Simulated gastro-intestinal digestion is widely employed in many fields of food and nutritional sciences, as conducting human trials are often costly, resource intensive, and ethically disputable. As a consequence, in vitro alternatives that determine endpoints such as the bioaccessibility of nutrients and non-nutrients or the digestibility of macronutrients (e.g. lipids, proteins and carbohydrates) are used for screening and building new hypotheses. Various digestion models have been proposed, often impeding the possibility to compare results across research teams. For example, a large variety of enzymes from different sources such as of porcine, rabbit or human origin have been used, differing in their activity and characterization. Differences in pH, mineral type, ionic strength and digestion time, which alter enzyme activity and other phenomena, may also considerably alter results. Other parameters such as the presence of phospholipids, individual enzymes such as gastric lipase and digestive emulsifiers vs. their mixtures (e.g. pancreatin and bile salts), and the ratio of food bolus to digestive fluids, have also been discussed at length. In the present consensus paper, within the COST Infogest network, we propose a general standardised and practical static digestion method based on physiologically relevant conditions that can be applied for various endpoints, which may be amended to accommodate further specific requirements. A frameset of parameters including the oral, gastric and small intestinal digestion are outlined and their relevance discussed in relation to available in vivo data and enzymes. This consensus paper will give a detailed protocol and a line-by-line, guidance, recommendations and justifications but also limitation of the proposed model. This harmonised static, in vitro digestion method for food should aid the production of more comparable data in the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            INFOGEST static in vitro simulation of gastrointestinal food digestion

            Developing a mechanistic understanding of the impact of food structure and composition on human health has increasingly involved simulating digestion in the upper gastrointestinal tract. These simulations have used a wide range of different conditions that often have very little physiological relevance, and this impedes the meaningful comparison of results. The standardized protocol presented here is based on an international consensus developed by the COST INFOGEST network. The method is designed to be used with standard laboratory equipment and requires limited experience to encourage a wide range of researchers to adopt it. It is a static digestion method that uses constant ratios of meal to digestive fluids and a constant pH for each step of digestion. This makes the method simple to use but not suitable for simulating digestion kinetics. Using this method, food samples are subjected to sequential oral, gastric and intestinal digestion while parameters such as electrolytes, enzymes, bile, dilution, pH and time of digestion are based on available physiological data. This amended and improved digestion method (INFOGEST 2.0) avoids challenges associated with the original method, such as the inclusion of the oral phase and the use of gastric lipase. The method can be used to assess the endpoints resulting from digestion of foods by analyzing the digestion products (e.g., peptides/amino acids, fatty acids, simple sugars) and evaluating the release of micronutrients from the food matrix. The whole protocol can be completed in ~7 d, including ~5 d required for the determination of enzyme activities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review.

              Pressurized liquid extraction is a "green" technology for the extraction of nutraceuticals from foods and herbal plants. This review discusses the extraction principles and the optimization of the extraction parameters that improves the extraction efficiency. The use of different solvent mixtures and other extraction additives to enhance the efficiency of the extraction are discussed. Dynamic mode of extraction in Pressurized liquid extraction, and the use of combined and hyphenated sample preparation and analytical techniques are presented. This work discusses how different studies used Pressurized liquid extraction to enrich phenolic compounds, lignans, carotenoids, oils and lipids, essential oils and other nutraceuticals from foods and herbal plants. Copyright © 2011 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Food Chem X
                Food Chem X
                Food Chemistry: X
                Elsevier
                2590-1575
                24 March 2024
                30 June 2024
                24 March 2024
                : 22
                : 101324
                Affiliations
                [a ]Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
                [b ]NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
                [c ]Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
                Author notes
                [* ]Corresponding author. luca.campone@ 123456unimib.it
                Article
                S2590-1575(24)00211-6 101324
                10.1016/j.fochx.2024.101324
                10999800
                38590634
                e934706e-17f1-49a4-bd9c-4923e78aa8a8
                © 2024 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 February 2024
                : 13 March 2024
                : 19 March 2024
                Categories
                Research Article

                glucohirsutin (pubchem cid 44237258),glucoarabin (pubchem cid 46173881),glucocamelin (pubchem cid 162639109),pressurized liquid extraction,camelina sativa by-products,glucosinolates,bioaccessibility

                Comments

                Comment on this article