72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exosome Theranostics: Biology and Translational Medicine

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exosomes are common membrane-bound nanovesicles that contain diverse biomolecules, such as lipids, proteins, and nucleic acids. Exosomes are derived from cells through exocytosis, are ingested by target cells, and can transfer biological signals between local or distant cells. Exosome secretion is a constitutive phenomenon that is involved in both physiological and pathological processes and determines both the exosomal surface molecules and the contents. Hence, we can exploit exosomes as biomarkers, vaccines and drug carriers and modify them rationally for therapeutic interventions. However, it is still a challenge to identify, isolate and quantify exosomes accurately, efficiently and selectively. Further studies on exosomes will explore their potential in translational medicine and provide new avenues for the creation of effective clinical diagnostics and therapeutic strategies; the use of exosomes in these applications can be called exosome theranostics. This review describes the fundamental processes of exosome formation and uptake. In addition, the physiological and pathological roles of exosomes in biology are also illustrated with a focus on how exosomes can be exploited or engineered as powerful tools in translational medicine.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes.

          Exosomes are 40-100nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of oncogenic proteins as well as mRNA and miRNA. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. However, all preparations invariably contain varying proportions of other membranous vesicles that co-purify with exosomes such as shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, in this study we performed a comprehensive evaluation of current methods used for exosome isolation including ultracentrifugation (UC-Exos), OptiPrep™ density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM coated magnetic beads (IAC-Exos). Notably, all isolations contained 40-100nm vesicles, and were positive for exosome markers (Alix, TSG101, HSP70) based on electron microscopy and Western blotting. We employed a proteomic approach to profile the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, we found IAC-Exos to be the most effective method to isolate exosomes. For example, Alix, TSG101, CD9 and CD81 were significantly higher (at least 2-fold) in IAC-Exos, compared to UG-Exos and DG-Exos. Application of immunoaffinity capture has enabled the identification of proteins including the ESCRT-III component VPS32C/CHMP4C, and the SNARE synaptobrevin 2 (VAMP2) in exosomes for the first time. Additionally, several cancer-related proteins were identified in IAC-Exos including various ephrins (EFNB1, EFNB2) and Eph receptors (EPHA2-8, EPHB1-4), and components involved in Wnt (CTNNB1, TNIK) and Ras (CRK, GRB2) signalling. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells.

            Myeloid-derived suppressor cells (MDSCs) have been identified in humans and mice as a population of immature myeloid cells with the ability to suppress T cell activation. They accumulate in tumor-bearing mice and humans and have been shown to contribute to cancer development. Here, we have isolated tumor-derived exosomes (TDEs) from mouse cell lines and shown that an interaction between TDE-associated Hsp72 and MDSCs determines the suppressive activity of the MDSCs via activation of Stat3. In addition, tumor-derived soluble factors triggered MDSC expansion via activation of Erk. TDE-associated Hsp72 triggered Stat3 activation in MDSCs in a TLR2/MyD88-dependent manner through autocrine production of IL-6. Importantly, decreasing exosome production using dimethyl amiloride enhanced the in vivo antitumor efficacy of the chemotherapeutic drug cyclophosphamide in 3 different mouse tumor models. We also demonstrated that this mechanism is relevant in cancer patients, as TDEs from a human tumor cell line activated human MDSCs and triggered their suppressive function in an Hsp72/TLR2-dependent manner. Further, MDSCs from cancer patients treated with amiloride, a drug used to treat high blood pressure that also inhibits exosome formation, exhibited reduced suppressor functions. Collectively, our findings show in both mice and humans that Hsp72 expressed at the surface of TDEs restrains tumor immune surveillance by promoting MDSC suppressive functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients

              Background Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. Methodology/Principal Findings We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504±315) or caveolin-1 (619±310) were significantly increased in melanoma patients as compared to healthy donors (223±125 and 228±102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. Conclusions/Significance We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2018
                1 January 2018
                : 8
                : 1
                : 237-255
                Affiliations
                [1 ]Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China;
                [2 ]Institute of Translational Medicine, Zhejiang University, Hangzhou 310029 China;
                [3 ]College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058 China.
                Author notes
                ✉ Corresponding authors: Tel & Fax: +86-571-86971683, E-mail: bwang@ 123456zju.edu.cn (B.W.), luoyan2011@ 123456zju.edu.cn (Y.L.), zhengshu@ 123456zju.edu.cn (S.Z.)

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov08p0237
                10.7150/thno.21945
                5743472
                29290805
                e75b772e-3410-41de-9871-f51cd3d1bf16
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 16 July 2017
                : 4 October 2017
                Categories
                Review

                Molecular medicine
                exosome,extracellular vesicle,translational medicine,biomarker,drug delivery.
                Molecular medicine
                exosome, extracellular vesicle, translational medicine, biomarker, drug delivery.

                Comments

                Comment on this article