7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: not found
          • Article: not found

          Physics of inhomogeneous inorganic materials

          Ce-Wen Nan (1993)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Evolution of Nanoporosity in Dealloying

            Dealloying is a common corrosion process during which an alloy is "parted" by the selective dissolution of the electrochemically more active elements. This process results in the formation of a nanoporous sponge composed almost entirely of the more noble alloy constituents . Even though this morphology evolution problem has attracted considerable attention, the physics responsible for porosity evolution have remained a mystery . Here we show by experiment, lattice computer simulation, and a continuum model, that nanoporosity is due to an intrinsic dynamical pattern formation process - pores form because the more noble atoms are chemically driven to aggregate into two-dimensional clusters via a spinodal decomposition process at the solid-electrolyte interface. At the same time, the surface area continuously increases due to etching. Together, these processes evolve a characteristic length scale predicted by our continuum model. The applications potential of nanoporous metals is enormous. For instance, the high surface area of nanoporous gold made by dealloying Ag-Au can be chemically tailored, making it suitable for sensor applications, particularly in biomaterials contexts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanical properties of ultrahigh-strength gold nanowires.

              Nanowires have attracted considerable interest as nanoscale interconnects and as the active components of both electronic and electromechanical devices. Nanomechanical measurements are a challenge, but remain key to the development and processing of novel nanowire-based devices. Here, we report a general method to measure the spectrum of nanowire mechanical properties based on nanowire bending under the lateral load from an atomic force microscope tip. We find that for Au nanowires, Young's modulus is essentially independent of diameter, whereas the yield strength is largest for the smallest diameter wires, with strengths up to 100 times that of bulk materials, and substantially larger than that reported for bulk nanocrystalline metals (BNMs). In contrast to BNMs, nanowire plasticity is characterized by strain-hardening, demonstrating that dislocation motion and pile-up is still operative down to diameters of 40 nm. Possible origins for the different mechanical properties of nanowires and BNMs are discussed.
                Bookmark

                Author and article information

                Journal
                applab
                MRS Bulletin
                MRS Bull.
                Cambridge University Press (CUP)
                0883-7694
                1938-1425
                August 2009
                January 2011
                : 34
                : 08
                : 577-586
                Article
                10.1557/mrs2009.157
                e716c898-02c6-405e-9a77-92f1326e6d14
                © 2009
                History

                Comments

                Comment on this article