9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Two Cases of Spinal, Extraosseous, Intradural Ewing's sarcoma/Peripheral Neuroectodermal Tumor: Radiologic, Pathologic, and Molecular Analysis

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extraosseous Ewing's sarcoma/peripheral neuroectodermal tumors (ES/PNETs) are rare neoplasms that account for approximately 10%-15% of soft tissue sarcomas in children and 5% of soft tissue sarcomas in adults. Primary spinal, extraosseous, intradural ES/PNETs are even less common. The diagnosis of ES/PNET is extremely challenging, because the tumor can have a nonspecific radiologic appearance, and the histologic features are shared by many other “small round cell tumors.” Thus, ES/PNET should be included in the radiologic and pathologic differential diagnosis, even in older patients and in unusual tumor sites. We report two cases of spinal, extraosseous, intradural ES/PNETs in adults who presented with back pain. Magnetic resonance imaging revealed contrast enhancing, intradural lesions in the area of the conus medullaris. The tumor in Case 1 was partially intramedullary, while the tumor in Case 2 was exclusively extramedullary. In both cases, the radiologic and intraoperative surgical impression favored ependymoma. The diagnosis of ES/PNET was established in both cases by histopathologic, immunohistochemical, and molecular analysis.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Soft tissue tumors associated with EWSR1 translocation.

          The Ewing sarcoma breakpoint region 1 (EWSR1; also known as EWS) represents one of the most commonly involved genes in sarcoma translocations. In fact, it is involved in a broad variety of mesenchymal lesions which includes Ewing's sarcoma/peripheral neuroectodermal tumor, desmoplastic small round cell tumor,clear cell sarcoma, angiomatoid fibrous histiocytoma, extraskeletal myxoid chondrosarcoma, and a subset of myxoid liposarcoma. The fusion products between EWSR1 and partners usually results in fusion of the N-terminal transcription-activating domain of EWSR1 and the C-terminal DNA-binding domain of the fusion partner, eventually generating novel transcription factors. EWSR1 rearrangement can be visualized by the means of fluorescence in situ hybridization (FISH). As soft tissue sarcomas represent a diagnostically challenging group, FISH analysis is an extremely useful confirmatory diagnostic tool. However, as in most instances a split-apart approach is used, the results of molecular genetics must be evaluated in context with morphology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Utility of the immunohistochemical detection of FLI-1 expression in round cell and vascular neoplasm using a monoclonal antibody.

            FLI-1 nuclear transcription factor has been proposed as a useful tool in the differential diagnosis of small round cell sarcomas. Recently, FLI-1 has been reported as the first nuclear marker of endothelial differentiation. However, its clinical use has been hampered by major interpretation problems, due to the presence of background staining as well as staining variation between different lots of the same antiserum. In this study, a novel monoclonal antibody raised against the carboxyl terminal of the FLI-1 protein (clone GI146-222, BD Pharmingen) was tested in a series of small round cell and vascular neoplasms. Furthermore, in order to assess FLI-1 specificity, we analyzed its expression in a series of common epithelial and nonepithelial malignancies. In total, 15 Ewing's sarcomas, 10 rhabdomyosarcomas, 5 desmoplastic small round cell tumors, 10 synovial sarcomas, 10 high-grade pleomorphic sarcomas, 10 malignant melanomas, 5 Merkel's carcinomas, 10 colonic adenocarcinomas, 10 breast carcinomas, 10 lung adenocarcinomas, 20 angiosarcomas, 5 epithelioid hemangioendotheliomas, 10 Kaposi's sarcomas and 10 benign hemangiomas, were stained. A strong FLI-1 immunoreactivity was detected in all Ewing's sarcomas and vascular neoplasms, highlighting the high sensitivity of FLI-1 monoclonal antibody. However, 2/5 Merkel's carcinomas and 1/10 malignant melanomas showed a strong nuclear immunostaining, suggesting that FLI-1 may not be so helpful in the differential diagnosis of cutaneous Ewing's sarcoma. In addition, a weak immunoreactivity was found in 3/5 Merkel cell carcinomas, 3/10 synovial sarcomas, 5/10 malignant melanomas, 6/10 lung adenocarcinomas and in 1/10 breast carcinomas. In contrast, all the rhabdomyosarcomas, desmoplastic small round cell tumors, high-grade pleomorphic sarcomas and colonic adenocarcinomas tested were negative. Importantly, in contrast with previous studies, no background staining was observed. Our results indicate that FLI-1 monoclonal antibody can be reliably applied to the differential diagnosis of small round cell neoplasms of soft tissue, and confirm its important role as nuclear marker of endothelial differentiation, mainly helpful in those cases in which technical artifacts are seen by using the traditional membranous and cytoplasmic endothelial markers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ewing sarcoma family of tumors.

              The Ewing sarcoma family of tumors (ESFT) comprises morphologically heterogeneous tumors that are characterized by nonrandom chromosomal translocations involving the EWS gene and one of several members of the ETS family of transcription factors. The translocation t(11;22)(q24;q12) is the most common and leads to the formation of the EWS-FLI1 fusion protein, which contributes to ESFT pathogenesis by modulating the expression of target genes. Tumors may be composed of small uniform cells with minimal morphologic evidence of differentiation, or they may be composed of larger, less uniform cells with varying degrees of neuroectodermal differentiation. CD99 expression is identified in nearly all ESFT and constitutes a useful positive marker when used as part of a panel of immunostains that can help rule out other differential diagnostic considerations. Molecular diagnostic tests commonly used to detect the presence of ESFT-specific translocations include RT-PCR and fluorescence in situ hybridization. Current therapy for patients with ESFT includes chemotherapy and surgery with or without radiation therapy. At present, the most significant prognostic factor for patients with ESFT is whether the disease is localized or metastatic.
                Bookmark

                Author and article information

                Journal
                J Clin Imaging Sci
                J Clin Imaging Sci
                JCIS
                Journal of Clinical Imaging Science
                Medknow Publications & Media Pvt Ltd (India )
                2156-7514
                2156-5597
                2014
                30 January 2014
                : 4
                : 6
                Affiliations
                [1]Department of Pathology, Thomas Jefferson University Hospital, Philadelphia, PA, United States
                [1 ]Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA, United States
                [2 ]Department of Laboratory of Pathology, National Cancer Institute, United States
                Author notes
                Address for correspondence: Dr. Mark T Curtis, Room 282 Main Building, Department of Pathology, Thomas Jefferson University Hospital, 132 South 10 th Street, Philadelphia, PA 19107, United States. E-mail: mark.curtis@ 123456jefferson.edu
                Article
                JCIS-4-6
                10.4103/2156-7514.126050
                3952377
                24678438
                e6eb1998-ea04-4521-b5a2-3e1d74d77c33
                Copyright: © 2014 Mardekian SK.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 November 2013
                : 08 January 2014
                Categories
                Radiologic-Pathologic Correlation

                Radiology & Imaging
                ewing sarcoma/peripheral neuroectodermal tumor,intradural spinal neoplasms,peripheral neuroectodermal tumors

                Comments

                Comment on this article