0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cytotoxicity and Characterization of Zinc Oxide and Silver Nanoparticles Synthesized Using Ocimum tenuiflorum and Ocimum gratissimum Herbal Formulation

      research-article
      1 , , 1 , 2 , 3
      ,
      Cureus
      Cureus
      ocimum gratissimum, ocimum tenuiflorum, green synthesis, black tulsi, african basil, znonps, agnps

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Toxicological assessments of nanoparticles are becoming more and more necessary due to the current rapid increase in interest in them for biomedical applications. This study aimed to synthesize and characterize zinc oxide nanoparticles (ZnONPs) and silver nanoparticles (AgNPs) using Ocimum tenuiflorum (black tulsi) and Ocimum gratissimum (African basil) herbal formulation extracts and to evaluate their cytotoxic effects.

          Methods

          The synthesis of AgNPs and ZnONPs was monitored using UV-visible spectra analysis at different time intervals. The nanoparticles' morphology and elemental composition were examined via scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Furthermore, Fourier-transform infrared spectroscopy (FT-IR) spectra analysis was employed to identify the functional groups within the nanoparticles. The cytotoxic effects of the nanoparticles were evaluated using the brine shrimp lethality assay.

          Results

          The UV-visible spectra analysis revealed the successful synthesis of AgNPs and ZnONPs, with maximum absorption peaks observed at 430 nm and 380 nm, respectively. SEM images showed that AgNPs were spherical in shape and tended to agglomerate, while ZnONPs displayed a unique rod-like to short prism shape, and EDX analysis confirmed the presence of both silver and zinc in these nanoparticles, alongside other elements from the herbal extracts. FT-IR analysis indicated the existence of diverse functional groups on the nanoparticles' surfaces. The brine shrimp lethality assay results demonstrated a concentration-dependent cytotoxic effect of the nanoparticles.

          Conclusion

          The study successfully synthesized and characterized AgNPs and ZnONPs using Ocimum tenuiflorum and Ocimum gratissimum herbal formulation extracts. The nanoparticles exhibited significant cytotoxic effects, suggesting their potential applications in various fields. Our results highlight the need for a more discrete use of nanoparticles for biomedical applications. Further studies are needed to explore their potential uses and ensure their safe and effective application.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Silver nanoparticles as a new generation of antimicrobials.

          Silver has been in use since time immemorial in the form of metallic silver, silver nitrate, silver sulfadiazine for the treatment of burns, wounds and several bacterial infections. But due to the emergence of several antibiotics the use of these silver compounds has been declined remarkably. Nanotechnology is gaining tremendous impetus in the present century due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals. Metallic silver in the form of silver nanoparticles has made a remarkable comeback as a potential antimicrobial agent. The use of silver nanoparticles is also important, as several pathogenic bacteria have developed resistance against various antibiotics. Hence, silver nanoparticles have emerged up with diverse medical applications ranging from silver based dressings, silver coated medicinal devices, such as nanogels, nanolotions, etc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants

            While metal nanoparticles are being increasingly used in many sectors of the economy, there is growing interest in the biological and environmental safety of their production. The main methods for nanoparticle production are chemical and physical approaches that are often costly and potentially harmful to the environment. The present review is devoted to the possibility of metal nanoparticle synthesis using plant extracts. This approach has been actively pursued in recent years as an alternative, efficient, inexpensive, and environmentally safe method for producing nanoparticles with specified properties. This review provides a detailed analysis of the various factors affecting the morphology, size, and yield of metal nanoparticles. The main focus is on the role of the natural plant biomolecules involved in the bioreduction of metal salts during the nanoparticle synthesis. Examples of effective use of exogenous biomatrices (peptides, proteins, and viral particles) to obtain nanoparticles in plant extracts are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications

              Zinc oxide nanoparticles (ZnO NPs) are used in an increasing number of industrial products such as rubber, paint, coating, and cosmetics. In the past two decades, ZnO NPs have become one of the most popular metal oxide nanoparticles in biological applications due to their excellent biocompatibility, economic, and low toxicity. ZnO NPs have emerged a promising potential in biomedicine, especially in the fields of anticancer and antibacterial fields, which are involved with their potent ability to trigger excess reactive oxygen species (ROS) production, release zinc ions, and induce cell apoptosis. In addition, zinc is well known to keep the structural integrity of insulin. So, ZnO NPs also have been effectively developed for antidiabetic treatment. Moreover, ZnO NPs show excellent luminescent properties and have turned them into one of the main candidates for bioimaging. Here, we summarize the synthesis and recent advances of ZnO NPs in the biomedical fields, which will be helpful for facilitating their future research progress and focusing on biomedical fields.
                Bookmark

                Author and article information

                Journal
                Cureus
                Cureus
                2168-8184
                Cureus
                Cureus (Palo Alto (CA) )
                2168-8184
                3 February 2024
                February 2024
                : 16
                : 2
                : e53481
                Affiliations
                [1 ] Orthodontics and Dentofacial Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
                [2 ] Nano-Biomedicine Lab, Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
                [3 ] Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
                Author notes
                Article
                10.7759/cureus.53481
                10910189
                38440033
                e695995e-1e53-46d9-a42e-d506fd8f1266
                Copyright © 2024, Varghese et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 December 2023
                : 2 February 2024
                Categories
                Other
                Dentistry
                Oral Medicine

                ocimum gratissimum,ocimum tenuiflorum,green synthesis,black tulsi,african basil,znonps,agnps

                Comments

                Comment on this article