3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Highly Efficient Microcell‐Mediated Transfer of HACs Containing a Genomic Region of Interest into Mammalian Cells

      1 , 1 , 1
      Current Protocols
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia.

          The β-haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of β-thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells. Compound β(E)/β(0)-thalassaemia is the most common form of severe thalassaemia in southeast Asian countries and their diasporas. The β(E)-globin allele bears a point mutation that causes alternative splicing. The abnormally spliced form is non-coding, whereas the correctly spliced messenger RNA expresses a mutated β(E)-globin with partial instability. When this is compounded with a non-functional β(0) allele, a profound decrease in β-globin synthesis results, and approximately half of β(E)/β(0)-thalassaemia patients are transfusion-dependent. The only available curative therapy is allogeneic haematopoietic stem cell transplantation, although most patients do not have a human-leukocyte-antigen-matched, geno-identical donor, and those who do still risk rejection or graft-versus-host disease. Here we show that, 33 months after lentiviral β-globin gene transfer, an adult patient with severe β(E)/β(0)-thalassaemia dependent on monthly transfusions since early childhood has become transfusion independent for the past 21 months. Blood haemoglobin is maintained between 9 and 10 g dl(-1), of which one-third contains vector-encoded β-globin. Most of the therapeutic benefit results from a dominant, myeloid-biased cell clone, in which the integrated vector causes transcriptional activation of HMGA2 in erythroid cells with further increased expression of a truncated HMGA2 mRNA insensitive to degradation by let-7 microRNAs. The clonal dominance that accompanies therapeutic efficacy may be coincidental and stochastic or result from a hitherto benign cell expansion caused by dysregulation of the HMGA2 gene in stem/progenitor cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges.

            In vivo gene replacement for the treatment of inherited disease is one of the most compelling concepts in modern medicine. Adeno-associated virus (AAV) vectors have been extensively used for this purpose and have shown therapeutic efficacy in a range of animal models. Successful translation to the clinic was initially slow, but long-term expression of donated genes at therapeutic levels has now been achieved in patients with inherited retinal disorders and haemophilia B. Recent exciting results have raised hopes for the treatment of many other diseases. As we discuss here, the prospects and challenges for AAV gene therapy are to a large extent dependent on the target tissue and the specific disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Formation of de novo centromeres and construction of first-generation human artificial microchromosomes.

              We have combined long synthetic arrays of alpha satellite DNA with telomeric DNA and genomic DNA to generate artificial chromosomes in human HT1080 cells. The resulting linear microchromosomes contain exogenous alpha satellite DNA, are mitotically and cytogenetically stable in the absence of selection for up to six months in culture, bind centromere proteins specific for active centromeres, and are estimated to be 6-10 megabases in size, approximately one-fifth to one-tenth the size of endogenous human chromosomes. We conclude that this strategy results in the formation of de novo centromere activity and that the microchromosomes so generated contain all of the sequence elements required for stable mitotic chromosome segregation and maintenance. This first-generation system for the construction of human artificial chromosomes should be suitable for dissecting the sequence requirements of human centromeres, as well as developing constructs useful for therapeutic applications.
                Bookmark

                Author and article information

                Journal
                Current Protocols
                Current Protocols
                Wiley
                2691-1299
                2691-1299
                September 2021
                September 07 2021
                September 2021
                : 1
                : 9
                Affiliations
                [1 ]Developmental Therapeutics Branch, National Cancer Institute National Institutes of Health Bethesda Maryland
                Article
                10.1002/cpz1.236
                34491634
                e66260e1-f991-4667-b6a9-78c88100523f
                © 2021

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article