6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Uncontrolled hypertension associates with subclinical cerebrovascular health globally: a multimodal imaging study

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          A new equation to estimate glomerular filtration rate.

          Equations to estimate glomerular filtration rate (GFR) are routinely used to assess kidney function. Current equations have limited precision and systematically underestimate measured GFR at higher values. To develop a new estimating equation for GFR: the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Cross-sectional analysis with separate pooled data sets for equation development and validation and a representative sample of the U.S. population for prevalence estimates. Research studies and clinical populations ("studies") with measured GFR and NHANES (National Health and Nutrition Examination Survey), 1999 to 2006. 8254 participants in 10 studies (equation development data set) and 3896 participants in 16 studies (validation data set). Prevalence estimates were based on 16,032 participants in NHANES. GFR, measured as the clearance of exogenous filtration markers (iothalamate in the development data set; iothalamate and other markers in the validation data set), and linear regression to estimate the logarithm of measured GFR from standardized creatinine levels, sex, race, and age. In the validation data set, the CKD-EPI equation performed better than the Modification of Diet in Renal Disease Study equation, especially at higher GFR (P < 0.001 for all subsequent comparisons), with less bias (median difference between measured and estimated GFR, 2.5 vs. 5.5 mL/min per 1.73 m(2)), improved precision (interquartile range [IQR] of the differences, 16.6 vs. 18.3 mL/min per 1.73 m(2)), and greater accuracy (percentage of estimated GFR within 30% of measured GFR, 84.1% vs. 80.6%). In NHANES, the median estimated GFR was 94.5 mL/min per 1.73 m(2) (IQR, 79.7 to 108.1) vs. 85.0 (IQR, 72.9 to 98.5) mL/min per 1.73 m(2), and the prevalence of chronic kidney disease was 11.5% (95% CI, 10.6% to 12.4%) versus 13.1% (CI, 12.1% to 14.0%). The sample contained a limited number of elderly people and racial and ethnic minorities with measured GFR. The CKD-EPI creatinine equation is more accurate than the Modification of Diet in Renal Disease Study equation and could replace it for routine clinical use. National Institute of Diabetes and Digestive and Kidney Diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia.

            This review provides a summary statement of recommended implementations of arterial spin labeling (ASL) for clinical applications. It is a consensus of the ISMRM Perfusion Study Group and the European ASL in Dementia consortium, both of whom met to reach this consensus in October 2012 in Amsterdam. Although ASL continues to undergo rapid technical development, we believe that current ASL methods are robust and ready to provide useful clinical information, and that a consensus statement on recommended implementations will help the clinical community to adopt a standardized approach. In this review, we describe the major considerations and trade-offs in implementing an ASL protocol and provide specific recommendations for a standard approach. Our conclusion is that as an optimal default implementation, we recommend pseudo-continuous labeling, background suppression, a segmented three-dimensional readout without vascular crushing gradients, and calculation and presentation of both label/control difference images and cerebral blood flow in absolute units using a simplified model. Magn Reson Med 73:102-116, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Associations between blood pressure across adulthood and late-life brain structure and pathology in the neuroscience substudy of the 1946 British birth cohort (Insight 46): an epidemiological study

              Summary Background Midlife hypertension confers increased risk for cognitive impairment in late life. The sensitive period for risk exposure and extent that risk is mediated through amyloid or vascular-related mechanisms are poorly understood. We aimed to identify if, and when, blood pressure or change in blood pressure during adulthood were associated with late-life brain structure, pathology, and cognition. Methods Participants were from Insight 46, a neuroscience substudy of the ongoing longitudinal Medical Research Council National Survey of Health and Development, a birth cohort that initially comprised 5362 individuals born throughout mainland Britain in one week in 1946. Participants aged 69–71 years received T1 and FLAIR volumetric MRI, florbetapir amyloid-PET imaging, and cognitive assessment at University College London (London, UK); all participants were dementia-free. Blood pressure measurements had been collected at ages 36, 43, 53, 60–64, and 69 years. We also calculated blood pressure change variables between ages. Primary outcome measures were white matter hyperintensity volume (WMHV) quantified from multimodal MRI using an automated method, amyloid-β positivity or negativity using a standardised uptake value ratio approach, whole-brain and hippocampal volumes quantified from 3D-T1 MRI, and a composite cognitive score—the Preclinical Alzheimer Cognitive Composite (PACC). We investigated associations between blood pressure and blood pressure changes at and between 36, 43, 53, 60–64, and 69 years of age with WMHV using generalised linear models with a gamma distribution and log link function, amyloid-β status using logistic regression, whole-brain volume and hippocampal volumes using linear regression, and PACC score using linear regression, with adjustment for potential confounders. Findings Between May 28, 2015, and Jan 10, 2018, 502 individuals were assessed as part of Insight 46. 465 participants (238 [51%] men; mean age 70·7 years [SD 0·7]; 83 [18%] amyloid-β-positive) were included in imaging analyses. Higher systolic blood pressure (SBP) and diastolic blood pressure (DBP) at age 53 years and greater increases in SBP and DBP between 43 and 53 years were positively associated with WMHV at 69–71 years of age (increase in mean WMHV per 10 mm Hg greater SBP 7%, 95% CI 1–14, p=0·024; increase in mean WMHV per 10 mm Hg greater DBP 15%, 4–27, p=0·0057; increase in mean WMHV per one SD change in SBP 15%, 3–29, p=0·012; increase in mean WMHV per 1 SD change in DBP 15%, 3–30, p=0·017). Higher DBP at 43 years of age was associated with smaller whole-brain volume at 69–71 years of age (−6·9 mL per 10 mm Hg greater DBP, −11·9 to −1·9, p=0·0068), as were greater increases in DBP between 36 and 43 years of age (−6·5 mL per 1 SD change, −11·1 to −1·9, p=0·0054). Greater increases in SBP between 36 and 43 years of age were associated with smaller hippocampal volumes at 69–71 years of age (−0·03 mL per 1 SD change, −0·06 to −0·001, p=0·043). Neither absolute blood pressure nor change in blood pressure predicted amyloid-β status or PACC score at 69–71 years of age. Interpretation High and increasing blood pressure from early adulthood into midlife seems to be associated with increased WMHV and smaller brain volumes at 69–71 years of age. We found no evidence that blood pressure affected cognition or cerebral amyloid-β load at this age. Blood pressure monitoring and interventions might need to start around 40 years of age to maximise late-life brain health. Funding Alzheimer's Research UK, Medical Research Council, Dementias Platform UK, Wellcome Trust, Brain Research UK, Wolfson Foundation, Weston Brain Institute, Avid Radiopharmaceuticals.
                Bookmark

                Author and article information

                Contributors
                Journal
                European Radiology
                Eur Radiol
                Springer Science and Business Media LLC
                0938-7994
                1432-1084
                April 2021
                September 14 2020
                April 2021
                : 31
                : 4
                : 2233-2241
                Article
                10.1007/s00330-020-07218-5
                32929643
                e5bff625-1d77-41ab-8ac6-dac991627ebf
                © 2021

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article