8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Extended Conjugation Tuning Carbon Nitride for Non‐sacrificial H 2 O 2 Photosynthesis and Hypoxic Tumor Therapy**

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          A metal-free polymeric photocatalyst for hydrogen production from water under visible light.

          The production of hydrogen from water using a catalyst and solar energy is an ideal future energy source, independent of fossil reserves. For an economical use of water and solar energy, catalysts that are sufficiently efficient, stable, inexpensive and capable of harvesting light are required. Here, we show that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor. Contrary to other conducting polymer semiconductors, carbon nitride is chemically and thermally stable and does not rely on complicated device manufacturing. The results represent an important first step towards photosynthesis in general where artificial conjugated polymer semiconductors can be used as energy transducers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemodynamic Therapy: Tumour Microenvironment-Mediated Fenton and Fenton-like Reactions

            Tailored to the specific tumour microenvironment, which involves acidity and the overproduction of hydrogen peroxide, advanced nanotechnology has been introduced to generate the hydroxyl radical (. OH) primarily for tumour chemodynamic therapy (CDT) through the Fenton and Fenton-like reactions. Numerous studies have investigated the enhancement of CDT efficiency, primarily the increase in the amount of . OH generated. Notably, various strategies based on the Fenton reaction have been employed to enhance . OH generation, including nanomaterials selection, modulation of the reaction environment, and external energy fields stimulation, which are discussed systematically in this Minireview. Furthermore, the potential challenges and the methods used to facilitate CDT effectiveness are also presented to support this cutting-edge research area.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging.

              Two-dimensional nanosheets have attracted tremendous attention because of their promising practical application and theoretical values. The atomic-thick nanosheets are able to not only enhance the intrinsic properties of their bulk counterparts but also give birth to new promising properties. Herein, we highlight an available pathway to prepare the ultrathin graphitic-phase C(3)N(4) (g-C(3)N(4)) nanosheets by a "green" liquid exfoliation route from bulk g-C(3)N(4) in water for the first time. The as-obtained ultrathin g-C(3)N(4) nanosheet solution is very stable in both the acidic and alkaline environment and shows pH-dependent photoluminenscence (PL). Compared to the bulk g-C(3)N(4), ultrathin g-C(3)N(4) nanosheets show enhanced intrinsic photoabsorption and photoresponse, which induce their extremely high PL quantum yield up to 19.6%. Thus, benefiting from the inherent blue light PL with high quantum yields and high stability, good biocompatibility, and nontoxicity, the water-soluble ultrathin g-C(3)N(4) nanosheet is a brand-new but promising candidate for bioimaging application.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Angewandte Chemie International Edition
                Angew Chem Int Ed
                Wiley
                1433-7851
                1521-3773
                October 24 2022
                September 27 2022
                October 24 2022
                : 61
                : 43
                Affiliations
                [1 ]Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
                [2 ]Medical School Southeast University Nanjing 210009 China
                Article
                10.1002/anie.202210856
                35939064
                e5b6040f-491e-4dc6-a450-a3523def7eae
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article