2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An effective formaldehyde gas sensor based on oxygen-rich three-dimensional graphene

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Three-dimensional (3D) graphene with a high specific surface area and excellent electrical conductivity holds extraordinary potential for molecular gas sensing. Gas molecules adsorbed onto graphene serve as electron donors, leading to an increase in conductivity. However, several challenges remain for 3D graphene-based gas sensors, such as slow response and long recovery time. Therefore, research interest remains in the promotion of the sensitivity of molecular gas detection. In this study, we fabricate oxygen plasma-treated 3D graphene for the high-performance gas sensing of formaldehyde. We synthesize large-area, high-quality, 3D graphene over Ni foam by chemical vapor deposition and obtain freestanding 3D graphene foam after Ni etching. We compare three types of strategies—non-treatment, oxygen plasma, and etching in HNO 3 solution—for the posttreatment of 3D graphene. Eventually, the strategy for oxygen plasma-treated 3D graphene exceeds expectations, which may highlight the general gas sensing based on chemiresistors.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: not found
          • Article: not found

          Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Raman spectrum of graphene and graphene layers.

            Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality. We show that its electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers. The D peak second order changes in shape, width, and position for an increasing number of layers, reflecting the change in the electron bands via a double resonant Raman process. The G peak slightly down-shifts. This allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Raman spectroscopy as a versatile tool for studying the properties of graphene

              Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.
                Bookmark

                Author and article information

                Contributors
                Journal
                Nanotechnology
                Nanotechnology
                IOP Publishing
                0957-4484
                1361-6528
                February 10 2022
                April 30 2022
                February 10 2022
                April 30 2022
                : 33
                : 18
                : 185702
                Article
                10.1088/1361-6528/ac4eb4
                e58780a6-2ddc-4297-a69f-742766397882
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article