Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The byssus of the zebra mussel, Dreissena polymorpha. I: Morphology and in situ protein processing during maturation.

      Molecular marine biology and biotechnology
      Aging, Amino Acids, analysis, Animals, Bivalvia, anatomy & histology, physiology, Carbohydrates, isolation & purification, Cell Adhesion Molecules, chemistry, metabolism, Dihydroxyphenylalanine, Histocytochemistry, Locomotion, Protein Processing, Post-Translational, Time Factors

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The zebra mussel, Dreissena polymorpha, owes its notoriety as a biofouler to its adhesive skills and opportunism. Adhesion by the adult mussel to hard substrata is mediated by a nonliving extracorporeal structure called the byssus, which is superficially similar to the byssus of marine mussels in that it consists of a tight bundle of sclerotized threads tipped by adhesive plaques. Juvenile zebra mussels secrete a homologous structure on settlement, but they also employ an elongated belaying byssus while climbing that consists of an elastic, mucous filament anchored at irregular intervals by a byssal thread and plaque. This multiply anchored belaying line can be 20 to 30 times the mussel length. Histochemical tests show that the thread and plaque of both kinds of byssus contains a complex distribution of proteins that are subject to chemical processing after secretion. This processing may result from the formation of crosslinks following the catecholoxidase-catalyzed oxidation of peptidyl 3,4-dihydroxyphenylalanine during sclerotization.

          Related collections

          Author and article information

          Comments

          Comment on this article