29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patient-derived xenograft (PDX) models are created by engraftment of patient tumor tissues into immunocompetent mice. Since a PDX model retains the characteristics of the primary patient tumor including gene expression profiles and drug responses, it has become the most reliable in vivo human cancer model. The engraftment rate increases with the introduction of Non-obese diabetic Severe combined immunodeficiency (NOD/SCID)-based immunocompromised mice, especially the NK-deficient NOD strains NOD/SCID/interleukin-2 receptor gamma chain(IL2Rγ) null (NOG/NSG) and NOD/SCID/Jak3(Janus kinase 3) null (NOJ). Success rates differ with tumor origin: gastrointestinal tumors acquire a higher engraftment rate, while the rate is lower for breast cancers. Subcutaneous transplantation is the most popular method to establish PDX, but some tumors require specific environments, e.g., orthotropic or renal capsule transplantation. Human hormone treatment is necessary to establish hormone-dependent cancers such as prostate and breast cancers. PDX mice with human hematopoietic and immune systems (humanized PDX) are powerful tools for the analysis of tumor–immune system interaction and evaluation of immunotherapy response. A PDX biobank equipped with patients’ clinical data, gene-expression patterns, mutational statuses, tumor tissue architects, and drug responsiveness will be an authoritative resource for developing specific tumor biomarkers for chemotherapeutic predictions, creating individualized therapy, and establishing precise cancer medicine.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interrogating open issues in cancer precision medicine with patient-derived xenografts

            This Opinion article discusses progress and challenges in using patient-derived xenograft (PDX) models in cancer precision medicine. It is primarily co-authored by members of the EurOPDX Consortium and as such highlights the merits of shared PDX resources.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice.

              The scid mutation was backcrossed ten generations onto the NOD/Lt strain background, resulting in an immunodeficient stock (NOD/LtSz-scid/scid) with multiple defects in adaptive as well as nonadaptive immunologic function. NOD/LtSz-scid/scid mice lack functional lymphoid cells and show little or no serum Ig with age. Although NOD/(Lt-)+/+ mice develop T cell-mediated autoimmune, insulin-dependent diabetes mellitus, NOD/LtSz-scid/scid mice are both insulitis- and diabetes-free throughout life. However, because of a high incidence of thymic lymphomas, the mean lifespan of this congenic stock is only 8.5 mo under specific pathogen-free conditions. After i.v. injection of human CEM T-lymphoblastoid cells, splenic engraftment of these cells was fourfold greater in NOD/LtSz-scid/scid mice than in C.B17/Sz-scid/scid mice. Although C.B-17Sz-scid/scid mice exhibit robust NK cell activity, this activity is markedly reduced in both NOD/(Lt-)+/+ and NOD/LtSz-scid/scid mice. Presence of a functionally less mature macrophage population in NOD/LtSz-scid/scid vs C.B-17Sz-scid/scid mice is indicated by persistence in the former of the NOD/Lt strain-specific defect in LPS-stimulated IL-1 secretion by marrow-derived macrophages. Although C.B-17Sz-scid/scid and C57BL/6Sz-scid/scid mice have elevated serum hemolytic complement activity compared with their respective +/+ controls, both NOD/(LtSz-)+/+ and NOD/LtSz-scid/scid mice lack this activity. Age-dependent increases in serum Ig levels (> 1 micrograms/ml) were observed in only 2 of 30 NOD/LtSz-scid/scid mice vs 21 of 29 C.B-17/Sz-scid/scid animals. The multiple defects in innate and adaptive immunity unique to the NOD/LtSz-scid/scid mouse provide an excellent in vivo environment for reconstitution with human hematopoietic cells.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                13 August 2019
                August 2019
                : 8
                : 8
                : 889
                Affiliations
                [1 ]Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
                [2 ]Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
                [3 ]Department of Biochemistry, Khon Kaen University, Khon Kaen 40002, Thailand
                [4 ]Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
                Author notes
                [* ]Correspondence: okadas@ 123456kumamoto-u.ac.jp ; Tel.: +81-9-6373-6522
                Author information
                https://orcid.org/0000-0003-3124-5206
                Article
                cells-08-00889
                10.3390/cells8080889
                6721637
                31412684
                e545bbd9-2fb8-4343-932e-c168206a501b
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 June 2019
                : 09 August 2019
                Categories
                Review

                patient-derived xenograft,immunocompromised mice,precision medicine,drug screening,cancer,cell line,cancer immunotherapy,humanized mice

                Comments

                Comment on this article