21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional interplay between the transcription factors USF1 and PDX-1 and protein kinase CK2 in pancreatic β-cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucose homeostasis is regulated by insulin, which is produced in the β-cells of the pancreas. The synthesis of insulin is controlled by several transcription factors including PDX-1, USF1 and USF2. Both, PDX-1 and USF1 were identified as substrates for protein kinase CK2. Here, we have analysed the interplay of PDX-1, USF1 and CK2 in the regulation of PDX-1 gene transcription. We found that the PDX-1 promoter is dose-dependently transactivated by PDX-1 and transrepressed by USF1. With increasing glucose concentrations the transrepression of the PDX-1 promoter by USF1 is successively abrogated. PDX-1 binding to its own promoter was not influenced by glucose, whereas USF1 binding to the PDX-1 promoter was reduced. The same effect was observed after inhibition of the protein kinase activity by three different inhibitors or by using a phospho-mutant of USF1. Moreover, phosphorylation of USF1 by CK2 seems to strengthen the interaction between USF1 and PDX-1. Thus, CK2 is a negative regulator of the USF1-dependent PDX-1 transcription. Moreover, upon inhibition of CK2 in primary islets, insulin expression as well as insulin secretion were enhanced without affecting the viability of the cells. Therefore, inhibition of CK2 activity may be a promising approach to stimulate insulin production in pancreatic β-cells.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines.

          New insulin-secreting cell lines (INS-1 and INS-2) were established from cells isolated from an x-ray-induced rat transplantable insulinoma. The continuous growth of these cells was found to be dependent on the reducing agent 2-mercaptoethanol. Removal of this thiol compound caused a 15-fold drop in total cellular glutathione levels. These cells proliferated slowly (population doubling time about 100 h) and, in general, showed morphological characteristics typical of native beta-cells. Most cells stained positive for insulin and did not react with antibodies against the other islet hormones. The content of immunoreactive insulin was about 8 micrograms/10(6) cells, corresponding to 20% of the native beta-cell content. These cells synthesized both proinsulin I and II and displayed conversion rates of the two precursor hormones similar to those observed in rat islets. However, glucose failed to stimulate the rate of proinsulin biosynthesis. In static incubations, glucose stimulated insulin secretion from floating cell clusters or from attached cells. Under perifusion conditions, 10 mM but not 1 mM glucose enhanced secretion 2.2-fold. In the presence of forskolin and 3-isobutyl-1-methylxanthine, increase of glucose concentration from 2.8-20 mM caused a 4-fold enhancement of the rate of secretion. Glucose also depolarized INS-1 cells and raised the concentration of cytosolic Ca2+. This suggests that glucose is still capable of eliciting part of the ionic events at the plasma membrane, which leads to insulin secretion. The structural and functional characteristics of INS-1 cells remained unchanged over a period of 2 yr (about 80 passages). Although INS-2 cells have not been fully characterized, their insulin content was similar to that of INS-1 cells and they also remain partially sensitive to glucose as a secretagogue. INS-1 cells retain beta-cell surface antigens, as revealed by reactivity with the antigangloside monoclonal antibodies R2D6 and A2B5. These findings indicate that INS-1 cells have remained stable and retain a high degree of differentiation which should make them a suitable model for studying various aspects of beta-cell function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1.

            Intrauterine growth retardation (IUGR) has been linked to the onset of diseases in adulthood, including type 2 diabetes, and has been proposed to result from altered gene regulation patterns due to epigenetic modifications of developmental genes. To determine whether epigenetic modifications may play a role in the development of adult diabetes following IUGR, we used a rodent model of IUGR that expresses lower levels of Pdx1, a pancreatic and duodenal homeobox 1 transcription factor critical for beta cell function and development, which develops diabetes in adulthood. We found that expression of Pdx1 was permanently reduced in IUGR beta cells and underwent epigenetic modifications throughout development. The fetal IUGR state was characterized by loss of USF-1 binding at the proximal promoter of Pdx1, recruitment of the histone deacetylase 1 (HDAC1) and the corepressor Sin3A, and deacetylation of histones H3 and H4. Following birth, histone 3 lysine 4 (H3K4) was demethylated and histone 3 lysine 9 (H3K9) was methylated. During the neonatal period, these epigenetic changes and the reduction in Pdx1 expression could be reversed by HDAC inhibition. After the onset of diabetes in adulthood, the CpG island in the proximal promoter was methylated, resulting in permanent silencing of the Pdx1 locus. These results provide insight into the development of type 2 diabetes following IUGR and we believe they are the first to describe the ontogeny of chromatin remodeling in vivo from the fetus to the onset of disease in adulthood.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pdx1 and other factors that regulate pancreatic beta-cell survival.

              A progressive reduction in beta-cell mass occurs in the evolution of diabetes. Thus understanding the mechanisms responsible for this reduction in beta-cell mass is important for understanding the pathogenesis of diabetes and in developing novel approaches to prevention and treatment. Pancreatic duodenal homeobox 1 (Pdx1) is a transcription factor that plays a central role in pancreatic beta-cell function and survival. Complete deficiency of Pdx1 is associated with pancreatic agenesis, and partial deficiency leads to severe beta-cell dysfunction, and increases beta-cell death and diabetes both in rodent and human. Chronic hyperglycaemia and dyslipidaemia, which are major features of type 2 diabetes, cause beta-cell dysfunction via reduced Pdx1 expression. Inhibition of insulin/insulin-like growth factor (Igf) signalling followed by reduced Pdx1 expression is a common pathway induced by the majority of the mechanisms in apoptotic beta-cells. Although the report so far paid little attention to non-apoptotic beta-cell death (autophagy and necrosis), we expect these are also involved in the pathogenesis of diabetes. The potential role of Pdx1 in non-apoptotic beta-cell death should also be considered in future studies in diabetes, and in attempts to develop novel agents that target this process for prevention and treatment of the disorder.
                Bookmark

                Author and article information

                Contributors
                claudia.goetz@uks.eu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 November 2017
                27 November 2017
                2017
                : 7
                : 16367
                Affiliations
                [1 ]ISNI 0000 0001 2167 7588, GRID grid.11749.3a, Medical Biochemistry and Molecular Biology, Saarland University, ; Homburg, Germany
                [2 ]ISNI 0000 0001 2167 7588, GRID grid.11749.3a, Institute for Clinical & Experimental Surgery, Saarland University, ; Homburg, Germany
                Article
                16590
                10.1038/s41598-017-16590-0
                5703852
                29180680
                5dbd28d3-582a-4100-a2f6-1f65adcfced5
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 March 2017
                : 4 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article