24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      T Cell Defects and Immunotherapy in Chronic Lymphocytic Leukemia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          The treatment of chronic lymphocytic leukemia (CLL) is a rapidly evolving field; however, despite recent progress, CLL remains incurable. Different types of immunotherapy have emerged as therapeutic options for CLL, aiming to boost anti-tumor immune responses; that said, despite initial promising results, not all patients benefit from immunotherapy. Relevant to this, the tumor microenvironment (TME) in CLL has been proposed to suppress effective immune responses while also promoting tumor growth, hence impacting on the response to immunotherapy as well. T cells, in particular, are severely dysfunctional in CLL and cannot mount effective immune responses against the malignant cells. However, reinvigoration of their effector function is still a possibility under the proper manipulation and has been associated with tumor regression. In this contribution, we examine the current immunotherapeutic options for CLL in relation to well-characterized T cell defects, focusing on possible counteracts that enhance anti-tumor immunity through the available treatment modalities.

          Abstract

          In the past few years, independent studies have highlighted the relevance of the tumor microenvironment (TME) in cancer, revealing a great variety of TME-related predictive markers, as well as identifying novel therapeutic targets in the TME. Cancer immunotherapy targets different components of the immune system and the TME at large in order to reinforce effector mechanisms or relieve inhibitory and suppressive signaling. Currently, it constitutes a clinically validated treatment for many cancers, including chronic lymphocytic leukemia (CLL), an incurable malignancy of mature B lymphocytes with great dependency on microenvironmental signals. Although immunotherapy represents a promising therapeutic option with encouraging results in CLL, the dysfunctional T cell compartment remains a major obstacle in such approaches. In the scope of this review, we outline the current immunotherapeutic treatment options in CLL in the light of recent immunogenetic and functional evidence of T cell impairment. We also highlight possible approaches for overcoming T cell defects and invigorating potent anti-tumor immune responses that would enhance the efficacy of immunotherapy.

          Related collections

          Most cited references142

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion.

          Understanding how the immune system affects cancer development and progression has been one of the most challenging questions in immunology. Research over the past two decades has helped explain why the answer to this question has evaded us for so long. We now appreciate that the immune system plays a dual role in cancer: It can not only suppress tumor growth by destroying cancer cells or inhibiting their outgrowth but also promote tumor progression either by selecting for tumor cells that are more fit to survive in an immunocompetent host or by establishing conditions within the tumor microenvironment that facilitate tumor outgrowth. Here, we discuss a unifying conceptual framework called "cancer immunoediting," which integrates the immune system's dual host-protective and tumor-promoting roles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer immunoediting and resistance to T cell-based immunotherapy

            Anticancer immunotherapies involving the use of immune-checkpoint inhibitors or adoptive cellular transfer have emerged as new therapeutic pillars within oncology. These treatments function by overcoming or relieving tumour-induced immunosuppression, thereby enabling immune-mediated tumour clearance. While often more effective and better tolerated than traditional and targeted therapies, many patients have innate or acquired resistance to immunotherapies. Cancer immunoediting is the process whereby the immune system can both constrain and promote tumour development, which proceeds through three phases termed elimination, equilibrium and escape. Throughout these phases, tumour immunogenicity is edited, and immunosuppressive mechanisms that enable disease progression are acquired. The mechanisms of resistance to immunotherapy seem to broadly overlap with those used by cancers as they undergo immunoediting to evade detection by the immune system. In this Review, we discuss how a deeper understanding of the mechanisms underlying the cancer immunoediting process can provide insight into the development of resistance to immunotherapies and the strategies that can be used to overcome such resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adoptive cell transfer as personalized immunotherapy for human cancer.

              Adoptive cell therapy (ACT) is a highly personalized cancer therapy that involves administration to the cancer-bearing host of immune cells with direct anticancer activity. ACT using naturally occurring tumor-reactive lymphocytes has mediated durable, complete regressions in patients with melanoma, probably by targeting somatic mutations exclusive to each cancer. These results have expanded the reach of ACT to the treatment of common epithelial cancers. In addition, the ability to genetically engineer lymphocytes to express conventional T cell receptors or chimeric antigen receptors has further extended the successful application of ACT for cancer treatment. Copyright © 2015, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                29 June 2021
                July 2021
                : 13
                : 13
                : 3255
                Affiliations
                [1 ]Centre for Research and Technology Hellas, Institute of Applied Biosciences, 57001 Thessaloniki, Greece; e.vlachonikola@ 123456certh.gr (E.V.); kostas.stamatopoulos@ 123456certh.gr (K.S.)
                [2 ]Department of Genetics and Molecular Biology, Faculty of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
                [3 ]Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
                Author notes
                [* ]Correspondence: achatzidimitriou@ 123456certh.gr ; Tel.: +30-2310498474
                Article
                cancers-13-03255
                10.3390/cancers13133255
                8268526
                34209724
                e422c766-c690-4e72-88e5-6900a1955cbf
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 08 June 2021
                : 27 June 2021
                Categories
                Review

                chronic lymphocytic leukemia (cll),tumor microenvironment (tme),t cells,immunotherapy

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content154

                Cited by8

                Most referenced authors1,801