47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of ibrutinib on T-cell immunity in patients with chronic lymphocytic leukemia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic lymphocytic leukemia (CLL), a highly heterogeneous B-cell malignancy, is characterized by tumor microenvironment disorder and T-cell immune dysfunction, which play a major role in the proliferation and survival of CLL cells. Ibrutinib is the first irreversible inhibitor of Bruton’s tyrosine kinase (BTK). In addition to targeting B-cell receptor (BCR) signaling to kill tumor cells, increasing evidence has suggested that ibrutinib regulates the tumor microenvironment and T-cell immunity in a direct and indirect manner. For example, ibrutinib not only reverses the tumor microenvironment by blocking cytokine networks and toll-like receptor signaling but also regulates T cells in number, subset distribution, T-cell receptor (TCR) repertoire and immune function by inhibiting interleukin-2 inducible T-cell kinase (ITK) and reducing the expression of inhibitory receptors, and so on. In this review, we summarize the current evidence for the effects of ibrutinib on the tumor microenvironment and cellular immunity of patients with CLL, particularly for the behavior and function of T cells, explore its potential mechanisms, and provide a basis for the clinical benefits of long-term ibrutinib treatment and combined therapy based on T-cell-based immunotherapies.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: found

          CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer

          Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            T cell exhaustion

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              T Cell Dysfunction in Cancer.

              Therapeutic reinvigoration of tumor-specific T cells has greatly improved clinical outcome in cancer. Nevertheless, many patients still do not achieve durable benefit. Recent evidence from studies in murine and human cancer suggest that intratumoral T cells display a broad spectrum of (dys-)functional states, shaped by the multifaceted suppressive signals that occur within the tumor microenvironment. Here we discuss the current understanding of T cell dysfunction in cancer, the value of novel technologies to dissect such dysfunction at the single cell level, and how our emerging understanding of T cell dysfunction may be utilized to develop personalized strategies to restore antitumor immunity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                19 August 2022
                2022
                : 13
                : 962552
                Affiliations
                [1] Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital , Zhengzhou, China
                Author notes

                Edited by: Joanna Davies, San Diego Biomedical Research Institute, United States

                Reviewed by: Bartosz Puła, Institute of Hematology and Transfusiology (IHT), Poland; Stefania Gobessi, Gadeta BV, Netherlands

                *Correspondence: Yongping Song, songyongping0001@ 123456126.com ; Qingsong Yin, jnyinqingsong@ 123456163.com

                This article was submitted to Immunological Tolerance and Regulation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2022.962552
                9437578
                36059445
                ba57f861-27d1-47d5-b4b8-437cbbf0831c
                Copyright © 2022 Liu, Song and Yin

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 June 2022
                : 28 July 2022
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 128, Pages: 11, Words: 4473
                Categories
                Immunology
                Review

                Immunology
                chronic lymphocytic leukemia,ibrutinib,t-cell immunity,tumor microenvironment,immune regulation

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content959

                Cited by3

                Most referenced authors1,977