1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thyroid Diseases and Breast Cancer

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epidemiological studies aimed at defining the association of thyroid diseases with extra-thyroidal malignancies (EM) have aroused considerable interest in the possibility of revealing common genetic and environmental factors underlying disease etiology and progression. Over the years, multiple lines of evidence indicated a significant relationship between thyroid carcinomas and other primary EM, especially breast cancer. For the latter, a prominent association was also found with benign thyroid diseases. In particular, a meta-analysis revealed an increased risk of breast cancer in patients with autoimmune thyroiditis, and our recent work demonstrated that the odds ratio (OR) for breast cancer was raised in both thyroid autoantibody-positive and -negative patients. However, the OR was significantly lower for thyroid autoantibody-positive patients compared to the negative ones. This is in agreement with findings showing that the development of thyroid autoimmunity in cancer patients receiving immunotherapy is associated with better outcome and supports clinical evidence that breast cancer patients with thyroid autoimmunity have longer disease-free interval and overall survival. These results seem to suggest that factors other than oncologic treatments may play a role in the initiation and progression of a second primary malignancy. The molecular links between thyroid autoimmunity and breast cancer remain, however, unidentified, and different hypotheses have been proposed. Here, we will review the epidemiological, clinical, and experimental data relating thyroid diseases and breast cancer, as well as the possible hormonal and molecular mechanisms underlying such associations.

          Related collections

          Most cited references161

          • Record: found
          • Abstract: found
          • Article: not found

          Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer.

          Thyroid nodules are a common clinical problem, and differentiated thyroid cancer is becoming increasingly prevalent. Since the publication of the American Thyroid Association's guidelines for the management of these disorders was published in 2006, a large amount of new information has become available, prompting a revision of the guidelines. Relevant articles through December 2008 were reviewed by the task force and categorized by topic and level of evidence according to a modified schema used by the United States Preventative Services Task Force. The revised guidelines for the management of thyroid nodules include recommendations regarding initial evaluation, clinical and ultrasound criteria for fine-needle aspiration biopsy, interpretation of fine-needle aspiration biopsy results, and management of benign thyroid nodules. Recommendations regarding the initial management of thyroid cancer include those relating to optimal surgical management, radioiodine remnant ablation, and suppression therapy using levothyroxine. Recommendations related to long-term management of differentiated thyroid cancer include those related to surveillance for recurrent disease using ultrasound and serum thyroglobulin as well as those related to management of recurrent and metastatic disease. We created evidence-based recommendations in response to our appointment as an independent task force by the American Thyroid Association to assist in the clinical management of patients with thyroid nodules and differentiated thyroid cancer. They represent, in our opinion, contemporary optimal care for patients with these disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular aspects of thyroid hormone actions.

            Cellular actions of thyroid hormone may be initiated within the cell nucleus, at the plasma membrane, in cytoplasm, and at the mitochondrion. Thyroid hormone nuclear receptors (TRs) mediate the biological activities of T(3) via transcriptional regulation. Two TR genes, alpha and beta, encode four T(3)-binding receptor isoforms (alpha1, beta1, beta2, and beta3). The transcriptional activity of TRs is regulated at multiple levels. Besides being regulated by T(3), transcriptional activity is regulated by the type of thyroid hormone response elements located on the promoters of T(3) target genes, by the developmental- and tissue-dependent expression of TR isoforms, and by a host of nuclear coregulatory proteins. These nuclear coregulatory proteins modulate the transcription activity of TRs in a T(3)-dependent manner. In the absence of T(3), corepressors act to repress the basal transcriptional activity, whereas in the presence of T(3), coactivators function to activate transcription. The critical role of TRs is evident in that mutations of the TRbeta gene cause resistance to thyroid hormones to exhibit an array of symptoms due to decreasing the sensitivity of target tissues to T(3). Genetically engineered knockin mouse models also reveal that mutations of the TRs could lead to other abnormalities beyond resistance to thyroid hormones, including thyroid cancer, pituitary tumors, dwarfism, and metabolic abnormalities. Thus, the deleterious effects of mutations of TRs are more severe than previously envisioned. These genetic-engineered mouse models provide valuable tools to ascertain further the molecular actions of unliganded TRs in vivo that could underlie the pathogenesis of hypothyroidism. Actions of thyroid hormone that are not initiated by liganding of the hormone to intranuclear TR are termed nongenomic. They may begin at the plasma membrane or in cytoplasm. Plasma membrane-initiated actions begin at a receptor on integrin alphavbeta3 that activates ERK1/2 and culminate in local membrane actions on ion transport systems, such as the Na(+)/H(+) exchanger, or complex cellular events such as cell proliferation. Concentration of the integrin on cells of the vasculature and on tumor cells explains recently described proangiogenic effects of iodothyronines and proliferative actions of thyroid hormone on certain cancer cells, including gliomas. Thus, hormonal events that begin nongenomically result in effects in DNA-dependent effects. l-T(4) is an agonist at the plasma membrane without conversion to T(3). Tetraiodothyroacetic acid is a T(4) analog that inhibits the actions of T(4) and T(3) at the integrin, including angiogenesis and tumor cell proliferation. T(3) can activate phosphatidylinositol 3-kinase by a mechanism that may be cytoplasmic in origin or may begin at integrin alphavbeta3. Downstream consequences of phosphatidylinositol 3-kinase activation by T(3) include specific gene transcription and insertion of Na, K-ATPase in the plasma membrane and modulation of the activity of the ATPase. Thyroid hormone, chiefly T(3) and diiodothyronine, has important effects on mitochondrial energetics and on the cytoskeleton. Modulation by the hormone of the basal proton leak in mitochondria accounts for heat production caused by iodothyronines and a substantial component of cellular oxygen consumption. Thyroid hormone also acts on the mitochondrial genome via imported isoforms of nuclear TRs to affect several mitochondrial transcription factors. Regulation of actin polymerization by T(4) and rT(3), but not T(3), is critical to cell migration. This effect has been prominently demonstrated in neurons and glial cells and is important to brain development. The actin-related effects in neurons include fostering neurite outgrowth. A truncated TRalpha1 isoform that resides in the extranuclear compartment mediates the action of thyroid hormone on the cytoskeleton.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of thyroid hormone action.

              Our understanding of thyroid hormone action has been substantially altered by recent clinical observations of thyroid signaling defects in syndromes of hormone resistance and in a broad range of conditions, including profound mental retardation, obesity, metabolic disorders, and a number of cancers. The mechanism of thyroid hormone action has been informed by these clinical observations as well as by animal models and has influenced the way we view the role of local ligand availability; tissue and cell-specific thyroid hormone transporters, corepressors, and coactivators; thyroid hormone receptor (TR) isoform-specific action; and cross-talk in metabolic regulation and neural development. In some cases, our new understanding has already been translated into therapeutic strategies, especially for treating hyperlipidemia and obesity, and other drugs are in development to treat cardiac disease and cancer and to improve cognitive function.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JPMOB3
                Journal of Personalized Medicine
                JPM
                MDPI AG
                2075-4426
                February 2022
                January 25 2022
                : 12
                : 2
                : 156
                Article
                10.3390/jpm12020156
                35207645
                e4152b7e-3ead-4605-bd1d-5eb97e880100
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article