3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Renal Tissue-Derived Exosomal miRNA-34a in Diabetic Nephropathy Induces Renal Tubular Cell Fibrosis by Promoting the Polarization of M1 Macrophages

      research-article
      , , , , ,
      IET Nanobiotechnology
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Diabetic nephropathy (DN) is the leading cause of chronic kidney disease, and the activation and infiltration of phagocytes are critical steps of DN. This study aimed to explore the mechanism of exosomes in macrophages and diabetes nephropathy and the role of miRNA-34a, which might provide a new path for treating DN.

          Materials and Methods

          The DN model was established, and the success of the model establishment was confirmed by detecting general indicators, HE staining, and immunohistochemistry. Electron microscopy and NanoSight Tracking Analysis (NTA) were used to see the morphology and size of exosomes. MiRNA-34a inhibitor, miRNA-34a mimics, pc- PPARGC1A, and controls were transfected in macrophages with or without kidney exosomal. A dual-luciferase reporter gene experiment verifies the targeting relationship between miRNA-34a and PPARGC1A. After exosomal culture, macrophages are co-cultured with normal renal tubular cells to detect renal tubular cell fibrosis. Q-PCR and western blot were undertaken to detect related RNA and proteins.

          Results

          An animal model of diabetic nephropathy was successfully constructed. Macrophages could phagocytose exosomes. After ingesting model exosomes, M1 macrophages were activated, while M2 macrophages were weakened, indicating the model mice's kidney exosomes caused the polarization. MiRNA-34a inhibitor increased PPARGC1A expression. MiRNA-34a expressed higher in diabetic nephropathy Model-Exo. MiRNA-34a negatively regulated PPARGC1A. PPARGC1A rescued macrophage polarization and renal tubular cell fibrosis.

          Conclusion

          Exosomal miRNA-34a of tubular epithelial cells promoted M1 macrophage activation in diabetic nephropathy via negatively regulating PPARGC1A expression, which may provide a new direction for further exploration of DN treatment.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation and characterization of exosomes from cell culture supernatants and biological fluids.

          Exosomes are small membrane vesicles found in cell culture supernatants and in different biological fluids. Exosomes form in a particular population of endosomes, called multivesicular bodies (MVBs), by inward budding into the lumen of the compartment. Upon fusion of MVBs with the plasma membrane, these internal vesicles are secreted. Exosomes possess a defined set of membrane and cytosolic proteins. The physiological function of exosomes is still a matter of debate, but increasing results in various experimental systems suggest their involvement in multiple biological processes. Because both cell-culture supernatants and biological fluids contain different types of lipid membranes, it is critical to perform high-quality exosome purification. This unit describes different approaches for exosome purification from various sources, and discusses methods to evaluate the purity and homogeneity of the purified exosome preparations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review.

            Trafficking of biological material across membranes is an evolutionary conserved mechanism and is part of any normal cell homeostasis. Such transport is composed of active, passive, export through microparticles, and vesicular transport (exosomes) that collectively maintain proper compartmentalization of important micro- and macromolecules. In pathological states, such as cancer, aberrant activity of the export machinery results in expulsion of a number of key proteins and microRNAs resulting in their misexpression. Exosome-mediated expulsion of intracellular drugs could be another barrier in the proper action of most of the commonly used therapeutics, targeted agents, and their intracellular metabolites. Over the last decade, a number of studies have revealed that exosomes cross-talk and/or influence major tumor-related pathways, such as hypoxia-driven epithelial-to-mesenchymal transition, cancer stemness, angiogenesis, and metastasis involving many cell types within the tumor microenvironment. Emerging evidence suggests that exosome-secreted proteins can also propel fibroblast growth, resulting in desmoplastic reaction, a major barrier in effective cancer drug delivery. This comprehensive review highlights the advancements in the understanding of the biology of exosomes secretions and the consequence on cancer drug resistance. We propose that the successful combination of cancer treatments to tackle exosome-mediated drug resistance requires an interdisciplinary understanding of these cellular exclusion mechanisms, and how secreted biomolecules are involved in cellular cross-talk within the tumor microenvironment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease.

              Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of stages from simple steatosis to non-alcoholic steatohepatitis (NASH). However, disease pathogenesis remains largely unknown. microRNA (miRNA or miR) expression has recently been reported to be altered in human NASH, and modulated by ursodeoxycholic acid (UDCA) in the rat liver. Here, we aimed at evaluating the miR-34a/Sirtuin 1(SIRT1)/p53 pro-apoptotic pathway in human NAFLD, and to elucidate its function and modulation by UDCA in the rat liver and primary rat hepatocytes. Liver biopsies were obtained from NAFLD morbid obese patients undergoing bariatric surgery. Rat livers were collected from animals fed a 0.4% UDCA diets. Primary rat hepatocytes were incubated with bile acids or free fatty acids (FFAs) and transfected with a specific miRNA-34a precursor and/or with a p53 overexpression plasmid. p53 transcriptional activity was assessed by ELISA and target reporter constructs. miR-34a, apoptosis and acetylated p53 increased with disease severity, while SIRT1 diminished in the NAFLD liver. UDCA inhibited the miR-34a/SIRT1/p53 pathway in the rat liver in vivo and in primary rat hepatocytes. miR-34a overexpression confirmed its targeting by UDCA, which prevented miR-34a-dependent repression of SIRT1, p53 acetylation, and apoptosis. Augmented apoptosis by FFAs in miR-34a overexpressing cells was also inhibited by UDCA. Finally, p53 overexpression activated miR-34a/SIRT1/p53, which in turn was inhibited by UDCA, via decreased p53 transcriptional activity. Our results support a link between liver cell apoptosis and miR-34a/SIRT1/p53 signaling, specifically modulated by UDCA, and NAFLD severity. Potential endogenous modulators of NAFLD pathogenesis may ultimately provide new tools for therapeutic intervention. Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                IET Nanobiotechnol
                IET Nanobiotechnol
                IETNBT
                IET Nanobiotechnology
                Hindawi
                1751-8741
                1751-875X
                2024
                17 April 2024
                : 2024
                : 5702517
                Affiliations
                Department of Nephrology, The Second Affiliated Hospital, Kunming Medical University, No. 347 Dianmian Street, Kunming, Yunnan 650101, China
                Author notes

                Academic Editor: Seyed Mohammad Amini

                Author information
                https://orcid.org/0000-0002-1742-7268
                https://orcid.org/0000-0001-6380-5082
                https://orcid.org/0009-0001-4566-1596
                https://orcid.org/0009-0007-6460-6465
                https://orcid.org/0009-0002-8961-4254
                Article
                10.1049/2024/5702517
                11095076
                38863972
                e3d1d877-7b35-4766-a5bf-b045acb839bc
                Copyright © 2024 Shuai Zheng et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 November 2023
                : 14 March 2024
                : 28 March 2024
                Funding
                Funded by: Yunnan Provincial Science and Technology Department
                Funded by: Kunming Medical University
                Award ID: 202001AY070001-225
                Award ID: 202001AY070001-226
                Categories
                Research Article

                Comments

                Comment on this article