35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of the Nlrp3 Inflammasome in Microbial Infection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The intracellular Nod-like receptor Nlrp3 has emerged as the most versatile innate immune receptor because of its broad specificity in mediating immune response to a wide range of microbial or danger signals. Nlrp3 mediates assembly of the inflammasome complex in the presence of microbial components leading to the activation of caspase-1 and the processing and release of the pro-inflammatory cytokines IL-1β and IL-18. In this review, we give an update on the recent literature examining the role of Nlrp3 inflammasome in response to fungal, bacterial, and viral infections.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Nonfilamentous C. albicans mutants are avirulent.

          Candida albicans and Saccharomyces cerevisiae switch from a yeast to a filamentous form. In Saccharomyces, this switch is controlled by two regulatory proteins, Ste12p and Phd1p. Single-mutant strains, ste12/ste12 or phd1/phd1, are partially defective, whereas the ste12/ste12 phd1/phd1 double mutant is completely defective in filamentous growth and is noninvasive. The equivalent cph1/cph1 efg1/efg1 double mutant in Candida (Cph1p is the Ste12p homolog and Efg1p is the Phd1p homolog) is also defective in filamentous growth, unable to form hyphae or pseudohyphae in response to many stimuli, including serum or macrophages. This Candida cph1/cph1 efg1/efg1 double mutant, locked in the yeast form, is avirulent in a mouse model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf.

            Macrophages respond to Salmonella typhimurium infection via Ipaf, a NACHT-leucine-rich repeat family member that activates caspase-1 and secretion of interleukin 1beta. However, the specific microbial salmonella-derived agonist responsible for activating Ipaf is unknown. We show here that cytosolic bacterial flagellin activated caspase-1 through Ipaf but was independent of Toll-like receptor 5, a known flagellin sensor. Stimulation of the Ipaf pathway in macrophages after infection required a functional salmonella pathogenicity island 1 type III secretion system but not the flagellar type III secretion system; furthermore, Ipaf activation could be recapitulated by the introduction of purified flagellin directly into the cytoplasm. These observations raise the possibility that the salmonella pathogenicity island 1 type III secretion system cannot completely exclude 'promiscuous' secretion of flagellin and that the host capitalizes on this 'error' by activating a potent host-defense pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autophagy defends cells against invading group A Streptococcus.

              We found that the autophagic machinery could effectively eliminate pathogenic group A Streptococcus (GAS) within nonphagocytic cells. After escaping from endosomes into the cytoplasm, GAS became enveloped by autophagosome-like compartments and were killed upon fusion of these compartments with lysosomes. In autophagy-deficient Atg5-/- cells, GAS survived, multiplied, and were released from the cells. Thus, the autophagic machinery can act as an innate defense system against invading pathogens.
                Bookmark

                Author and article information

                Journal
                Front Microbiol
                Front. Microbio.
                Frontiers in Microbiology
                Frontiers Research Foundation
                1664-302X
                06 December 2010
                02 February 2011
                2011
                : 2
                : 12
                Affiliations
                [1] 1simpleDepartment of Immunology, St Jude Children's Research Hospital Memphis, TN, USA
                Author notes

                Edited by: Amal Amer, The Ohio State University, USA

                Reviewed by: Amal Amer, The Ohio State University, USA; Kevin Coombs, University of Manitoba, Canada

                *Correspondence: Thirumala-Devi Kanneganti, Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA. e-mail: thirumala-devi.kanneganti@ 123456stjude.org

                This article was submitted to Frontiers in Cellular and Infection Microbiology, a specialty of Frontiers in Microbiology.

                Article
                10.3389/fmicb.2011.00012
                3109351
                21687408
                e3b69e28-2cb6-4660-831f-34807553229c
                Copyright © 2011 Anand, Subbarao Malireddi and Kanneganti.

                This is an open-access article subject to an exclusive license agreement between the authors and Frontiers Media SA, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

                History
                : 15 November 2010
                : 19 January 2011
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 57, Pages: 6, Words: 5104
                Categories
                Microbiology
                Review Article

                Microbiology & Virology
                caspase-1,il-18,il-1β,nlr,nlrp3,inflammasome
                Microbiology & Virology
                caspase-1, il-18, il-1β, nlr, nlrp3, inflammasome

                Comments

                Comment on this article