To better understand the salt tolerance of the wild rice, Oryza coarctata, root tissue‐specific untargeted comparative metabolomic profiling was performed against the salt‐sensitive Oryza sativa. Under control, O. coarctata exhibited abundant levels of most metabolites, while salt caused their downregulation in contrast to metabolites in O. sativa. Under control conditions, itaconate, vanillic acid, threonic acid, eicosanoids, and a group of xanthin compounds were comparatively abundant in O. coarctata. Similarly, eight amino acids showed constitutive abundance in O. coarctata. In contrast, under control, glycerolipid abundances were lower in O. coarctata and salt stress further reduced their abundance. Most phospholipids also showed a distribution similar to the glycerolipids. Fatty acyls were however significantly induced in O. coarctata but organic acids were prominently induced in O. sativa. Changes in metabolite levels suggest that there was upregulation of the arachidonic acid metabolism in O. coarctata. In addition, the phenylpropanoid biosynthesis as well as cutin, suberin, and wax biosynthesis were also more enriched in O. coarctata, likely contributing to its anatomical traits responsible for salt tolerance. The comparative variation in the number of metabolites like gelsemine, allantoin, benzyl alcohol, specific phospholipids, and glycerolipids may play a role in maintaining the superior growth of O. coarctata in salt. Collectively, our results offer a comprehensive analysis of the metabolite profile in the roots of salt‐tolerant O. coarctata and salt‐sensitive O. sativa, which confirm potential targets for metabolic engineering to improve salt tolerance and resilience in commercial rice genotypes.
To gain a better insight of the remarkable salt tolerance of the wild rice, O. coarctata, root tissue specific untargeted comparative metabolomic profiling was performed against the salt sensitive O. sativa. Strikingly, under control condition, O. coarctata displayed an abundance in most metabolites including itaconate, vanillic acid, threonic acid, eicosanoids, a group of xanthin compounds and phospholipids, while salt caused a shift towards their downregulation in contrast to the fate of metabolites in O. sativa. Our results provide a comprehensive analysis of the metabolite pool in the roots of salt tolerant O. coarctata and salt sensitive O. sativa, and identify some of the potential pathways that can be targeted for future metabolic engineering to improve salt tolerance and resilience in commercial rice genotypes.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.