2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RNA multimerization as an organizing force for liquid–liquid phase separation

      discussion

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA interactions are exceptionally strong and highly redundant. As such, nearly any two RNAs have the potential to interact with one another over relatively short stretches, especially at high RNA concentrations. This is especially true for pairs of RNAs that do not form strong self-structure. Such phenomena can drive liquid–liquid phase separation, either solely from RNA–RNA interactions in the presence of divalent or organic cations, or in concert with proteins. RNA interactions can drive multimerization of RNA strands via both base-pairing and tertiary interactions. In this article, we explore the tendency of RNA to form stable monomers, dimers, and higher order structures as a function of RNA length and sequence through a focus on the intrinsic thermodynamic, kinetic, and structural properties of RNA. The principles we discuss are independent of any specific type of biomolecular condensate, and thus widely applicable. We also speculate how external conditions experienced by living organisms can influence the formation of nonmembranous compartments, again focusing on the physical and structural properties of RNA. Plants, in particular, are subject to diverse abiotic stresses including extreme temperatures, drought, and salinity. These stresses and the cellular responses to them, including changes in the concentrations of small molecules such as polyamines, salts, and compatible solutes, have the potential to regulate condensate formation by melting or strengthening base-pairing. Reversible condensate formation, perhaps including regulation by circadian rhythms, could impact biological processes in plants, and other organisms.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          Mfold web server for nucleic acid folding and hybridization prediction.

          M Zuker (2003)
          The abbreviated name, 'mfold web server', describes a number of closely related software applications available on the World Wide Web (WWW) for the prediction of the secondary structure of single stranded nucleic acids. The objective of this web server is to provide easy access to RNA and DNA folding and hybridization software to the scientific community at large. By making use of universally available web GUIs (Graphical User Interfaces), the server circumvents the problem of portability of this software. Detailed output, in the form of structure plots with or without reliability information, single strand frequency plots and 'energy dot plots', are available for the folding of single sequences. A variety of 'bulk' servers give less information, but in a shorter time and for up to hundreds of sequences at once. The portal for the mfold web server is http://www.bioinfo.rpi.edu/applications/mfold. This URL will be referred to as 'MFOLDROOT'.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular chaperones in protein folding and proteostasis.

            Most proteins must fold into defined three-dimensional structures to gain functional activity. But in the cellular environment, newly synthesized proteins are at great risk of aberrant folding and aggregation, potentially forming toxic species. To avoid these dangers, cells invest in a complex network of molecular chaperones, which use ingenious mechanisms to prevent aggregation and promote efficient folding. Because protein molecules are highly dynamic, constant chaperone surveillance is required to ensure protein homeostasis (proteostasis). Recent advances suggest that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease. Interventions in these and numerous other pathological states may spring from a detailed understanding of the pathways underlying proteome maintenance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Liquid phase condensation in cell physiology and disease.

              Phase transitions are ubiquitous in nonliving matter, and recent discoveries have shown that they also play a key role within living cells. Intracellular liquid-liquid phase separation is thought to drive the formation of condensed liquid-like droplets of protein, RNA, and other biomolecules, which form in the absence of a delimiting membrane. Recent studies have elucidated many aspects of the molecular interactions underlying the formation of these remarkable and ubiquitous droplets and the way in which such interactions dictate their material properties, composition, and phase behavior. Here, we review these exciting developments and highlight key remaining challenges, particularly the ability of liquid condensates to both facilitate and respond to biological function and how their metastability may underlie devastating protein aggregation diseases.
                Bookmark

                Author and article information

                Journal
                RNA
                RNA
                RNA
                RNA
                Cold Spring Harbor Laboratory Press
                1355-8382
                1469-9001
                January 2022
                January 2022
                : 28
                : 1
                : 16-26
                Affiliations
                [1 ]Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
                [2 ]Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
                [3 ]Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
                [4 ]Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
                Author notes
                Author information
                http://orcid.org/0000-0001-8074-3434
                http://orcid.org/0000-0002-9886-9163
                http://orcid.org/0000-0002-6355-9034
                http://orcid.org/0000-0003-4541-1594
                Article
                9509184 RA
                10.1261/rna.078999.121
                8675289
                34706977
                e2d17525-7bbf-4a34-aa6c-8c1595464f30
                © 2022 Bevilacqua et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society

                This article, published in RNA, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                Page count
                Pages: 11
                Funding
                Funded by: National Institutes of Health , doi 10.13039/100000002;
                Award ID: R35 GM127064
                Funded by: National Science Foundation , doi 10.13039/100000001;
                Award ID: IOS-2122357
                Categories
                Perspective

                biophysics,condensate,plant biology,rna structure
                biophysics, condensate, plant biology, rna structure

                Comments

                Comment on this article