70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of New Drug Targets and Resistance Mechanisms in Mycobacterium tuberculosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Identification of new drug targets is vital for the advancement of drug discovery against Mycobacterium tuberculosis , especially given the increase of resistance worldwide to first- and second-line drugs. Because traditional target-based screening has largely proven unsuccessful for antibiotic discovery, we have developed a scalable platform for target identification in M. tuberculosis that is based on whole-cell screening, coupled with whole-genome sequencing of resistant mutants and recombineering to confirm. The method yields targets paired with whole-cell active compounds, which can serve as novel scaffolds for drug development, molecular tools for validation, and/or as ligands for co-crystallization. It may also reveal other information about mechanisms of action, such as activation or efflux. Using this method, we identified resistance-linked genes for eight compounds with anti-tubercular activity. Four of the genes have previously been shown to be essential: AspS, aspartyl-tRNA synthetase, Pks13, a polyketide synthase involved in mycolic acid biosynthesis, MmpL3, a membrane transporter, and EccB3, a component of the ESX-3 type VII secretion system. AspS and Pks13 represent novel targets in protein translation and cell-wall biosynthesis. Both MmpL3 and EccB3 are involved in membrane transport. Pks13, AspS, and EccB3 represent novel candidates not targeted by existing TB drugs, and the availability of whole-cell active inhibitors greatly increases their potential for drug discovery.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Drugs for bad bugs: confronting the challenges of antibacterial discovery.

          The sequencing of the first complete bacterial genome in 1995 heralded a new era of hope for antibacterial drug discoverers, who now had the tools to search entire genomes for new antibacterial targets. Several companies, including GlaxoSmithKline, moved back into the antibacterials area and embraced a genomics-derived, target-based approach to screen for new classes of drugs with novel modes of action. Here, we share our experience of evaluating more than 300 genes and 70 high-throughput screening campaigns over a period of 7 years, and look at what we learned and how that has influenced GlaxoSmithKline's antibacterials strategy going forward.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic requirements for mycobacterial survival during infection.

            Despite the importance of tuberculosis as a public health problem, we know relatively little about the molecular mechanisms used by the causative organism, Mycobacterium tuberculosis, to persist in the host. To define these mechanisms, we have mutated virtually every nonessential gene of M. tuberculosis and determined the effect disrupting each gene on the growth rate of this pathogen during infection. A total of 194 genes that are specifically required for mycobacterial growth in vivo were identified. The behavior of these mutants provides a detailed view of the changing environment that the bacterium encounters as infection proceeds. A surprisingly large fraction of these genes are unique to mycobacteria and closely related species, indicating that many of the strategies used by this unusual group of organisms are fundamentally different from other pathogens
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase.

              Mycobacterium tuberculosis claims more human lives each year than any other bacterial pathogen. Infection is maintained in spite of acquired immunity and resists eradication by antimicrobials. Despite an urgent need for new therapies targeting persistent bacteria, our knowledge of bacterial metabolism throughout the course of infection remains rudimentary. Here we report that persistence of M. tuberculosis in mice is facilitated by isocitrate lyase (ICL), an enzyme essential for the metabolism of fatty acids. Disruption of the icl gene attenuated bacterial persistence and virulence in immune-competent mice without affecting bacterial growth during the acute phase of infection. A link between the requirement for ICL and the immune status of the host was established by the restored virulence of delta icl bacteria in interferon-gamma knockout mice. This link was apparent at the level of the infected macrophage: Activation of infected macrophages increased expression of ICL, and the delta icl mutant was markedly attenuated for survival in activated but not resting macrophages. These data suggest that the metabolism of M. tuberculosis in vivo is profoundly influenced by the host response to infection, an observation with important implications for the treatment of chronic tuberculosis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                23 September 2013
                : 8
                : 9
                : e75245
                Affiliations
                [1 ]Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, United States of America
                [2 ]Infectious Disease Research Institute, Seattle, Washington, United States of America
                [3 ]Seattle Biomedical Research Institute, Seattle, Washington, United States of America
                [4 ]Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
                [5 ]Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
                [6 ]University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
                [7 ]Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
                [8 ]Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
                [9 ]Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
                Université de Montpellier 2, France
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: VM EJR CS CEB DRS TP JCS HIMB. Performed the experiments: TO RL KG MJH NM KM. Analyzed the data: TRI. Wrote the manuscript: TRI JCS.

                Article
                PONE-D-13-13601
                10.1371/journal.pone.0075245
                3781026
                24086479
                e2ac344a-a833-4c2a-bba4-5134679b3b3b
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 April 2013
                : 12 August 2013
                Funding
                This work was funded by grants from the Bill & Melinda Gates Foundation, the Paul G. Allen Family Foundation (to DRS), NIH grant U01GM094568 (JCS, EJR, TRI), grant A-0015 from the Robert A. Welch Foundation (JCS), and the intramural research program of NIAID, NIH (to CEB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article