10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Recent Advances in Raman Microscopy and Imaging Techniques for Biosensors

      research-article
      Biosensors
      MDPI
      Raman, spectroscopy, microscopy, imaging, biological cells, SWCNT

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Raman microspectroscopy is now well established as one of the most powerful analytical techniques for a diverse range of applications in physical (material) and biological sciences. Consequently, the technique provides exceptional analytical opportunities to the science and technology of biosensing due to its capability to analyze both parts of a biosensor system—biologically sensitive components, and a variety of materials and systems used in physicochemical transducers. Recent technological developments in Raman spectral imaging have brought additional possibilities in two- and three-dimensional (2D and 3D) characterization of the biosensor’s constituents and their changes on a submicrometer scale in a label-free, real-time nondestructive method of detection. In this report, the essential components and features of a modern confocal Raman microscope are reviewed using the instance of Thermo Scientific DXRxi Raman imaging microscope, and examples of the potential applications of Raman microscopy and imaging for constituents of biosensors are presented.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes

          Single wall carbon nanotubes (SWNTs) that are found as close-packed arrays in crystalline ropes have been studied by using Raman scattering techniques with laser excitation wavelengths in the range from 514.5 to 1320 nanometers. Numerous Raman peaks were observed and identified with vibrational modes of armchair symmetry (n, n) SWNTs. The Raman spectra are in good agreement with lattice dynamics calculations based on C-C force constants used to fit the two-dimensional, experimental phonon dispersion of a single graphene sheet. Calculated intensities from a nonresonant, bond polarizability model optimized for sp2 carbon are also in qualitative agreement with the Raman data, although a resonant Raman scattering process is also taking place. This resonance results from the one-dimensional quantum confinement of the electrons in the nanotube.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biosensors and their applications - A review.

            The various types of biosensors such as enzyme-based, tissue-based, immunosensors, DNA biosensors, thermal and piezoelectric biosensors have been deliberated here to highlight their indispensable applications in multitudinous fields. Some of the popular fields implementing the use of biosensors are food industry to keep a check on its quality and safety, to help distinguish between the natural and artificial; in the fermentation industry and in the saccharification process to detect precise glucose concentrations; in metabolic engineering to enable in vivo monitoring of cellular metabolism. Biosensors and their role in medical science including early stage detection of human interleukin-10 causing heart diseases, rapid detection of human papilloma virus, etc. are important aspects. Fluorescent biosensors play a vital role in drug discovery and in cancer. Biosensor applications are prevalent in the plant biology sector to find out the missing links required in metabolic processes. Other applications are involved in defence, clinical sector, and for marine applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering.

              We show that the Raman scattering technique can give complete structural information for one-dimensional systems, such as carbon nanotubes. Resonant confocal micro-Raman spectroscopy of an (n,m) individual single-wall nanotube makes it possible to assign its chirality uniquely by measuring one radial breathing mode frequency omega(RBM) and using the theory of resonant transitions. A unique chirality assignment can be made for both metallic and semiconducting nanotubes of diameter d(t), using the parameters gamma(0) = 2.9 eV and omega(RBM) = 248/d(t). For example, the strong RBM intensity observed at 156 cm(-1) for 785 nm laser excitation is assigned to the (13,10) metallic chiral nanotube on a Si/SiO2 surface.
                Bookmark

                Author and article information

                Journal
                Biosensors (Basel)
                Biosensors (Basel)
                biosensors
                Biosensors
                MDPI
                2079-6374
                12 February 2019
                March 2019
                : 9
                : 1
                : 25
                Affiliations
                Thermo Fisher Scientific, 2 Radcliff Rd., Tewksbury, MA 01876, USA; alexander.rzhevskii@ 123456thermofisher.com
                Article
                biosensors-09-00025
                10.3390/bios9010025
                6468448
                30759840
                e2805b65-0dfa-48c3-b67e-f66561c86ab3
                © 2019 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 January 2019
                : 06 February 2019
                Categories
                Article

                raman,spectroscopy,microscopy,imaging,biological cells,swcnt
                raman, spectroscopy, microscopy, imaging, biological cells, swcnt

                Comments

                Comment on this article