3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physicochemical Property Determinants of Oral Absorption for PROTAC Protein Degraders

      research-article
      ,
      Journal of Medicinal Chemistry
      American Chemical Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heterobifunctional PROTAC degraders are gaining attention as a differentiated therapeutic modality with the potential for oral dosing in the clinic. Belonging to the beyond Rule of Five domain of physicochemical property space, we have sought to understand the determinants of oral absorption for this class of molecules for the rapid development of novel oral agents. We have collected a large data set from PROTAC molecules that have been dosed orally and intravenously in rats to estimate the fraction absorbed from oral dosing. Through this estimation, effects from differential hepatic clearance are normalized, allowing for a better assessment of the absorption. We demonstrate that rats are less permissive to PROTAC absorption than mice. The physicochemical properties of the molecules are then evaluated once compounds are rank-ordered by the fraction absorbed. We derive suggested design constraints on physicochemical properties for PROTAC molecules that are associated with higher probability of being orally absorbed.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular properties that influence the oral bioavailability of drug candidates.

            Oral bioavailability measurements in rats for over 1100 drug candidates studied at SmithKline Beecham Pharmaceuticals (now GlaxoSmithKline) have allowed us to analyze the relative importance of molecular properties considered to influence that drug property. Reduced molecular flexibility, as measured by the number of rotatable bonds, and low polar surface area or total hydrogen bond count (sum of donors and acceptors) are found to be important predictors of good oral bioavailability, independent of molecular weight. That on average both the number of rotatable bonds and polar surface area or hydrogen bond count tend to increase with molecular weight may in part explain the success of the molecular weight parameter in predicting oral bioavailability. The commonly applied molecular weight cutoff at 500 does not itself significantly separate compounds with poor oral bioavailability from those with acceptable values in this extensive data set. Our observations suggest that compounds which meet only the two criteria of (1) 10 or fewer rotatable bonds and (2) polar surface area equal to or less than 140 A(2) (or 12 or fewer H-bond donors and acceptors) will have a high probability of good oral bioavailability in the rat. Data sets for the artificial membrane permeation rate and for clearance in the rat were also examined. Reduced polar surface area correlates better with increased permeation rate than does lipophilicity (C log P), and increased rotatable bond count has a negative effect on the permeation rate. A threshold permeation rate is a prerequisite of oral bioavailability. The rotatable bond count does not correlate with the data examined here for the in vivo clearance rate in the rat.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PROTAC targeted protein degraders: the past is prologue

              Targeted protein degradation (TPD) is an emerging therapeutic modality with the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. In the 20 years since the concept of a proteolysis-targeting chimera (PROTAC) molecule harnessing the ubiquitin–proteasome system to degrade a target protein was reported, TPD has moved from academia to industry, where numerous companies have disclosed programmes in preclinical and early clinical development. With clinical proof-of-concept for PROTAC molecules against two well-established cancer targets provided in 2020, the field is poised to pursue targets that were previously considered ‘undruggable’. In this Review, we summarize the first two decades of PROTAC discovery and assess the current landscape, with a focus on industry activity. We then discuss key areas for the future of TPD, including establishing the target classes for which TPD is most suitable, expanding the use of ubiquitin ligases to enable precision medicine and extending the modality beyond oncology. Targeted protein degradation with proteolysis-targeting chimeras (PROTACs) has the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. This article summarizes the first two decades of PROTAC discovery and discusses key areas for the future of this therapeutic modality, including establishing the target classes for which it is most suitable and extending its application beyond oncology.
                Bookmark

                Author and article information

                Journal
                J Med Chem
                J Med Chem
                jm
                jmcmar
                Journal of Medicinal Chemistry
                American Chemical Society
                0022-2623
                1520-4804
                06 June 2023
                22 June 2023
                : 66
                : 12
                : 8281-8287
                Affiliations
                Arvinas Operations, Inc. , 5 Science Park, 395 Winchester Avenue, New Haven, Connecticut 06511 United States
                Author notes
                Author information
                https://orcid.org/0000-0002-6127-2814
                https://orcid.org/0009-0007-8781-9375
                Article
                10.1021/acs.jmedchem.3c00740
                10291545
                37279490
                e268b55c-7b2c-48e6-9ab3-ccfae1bf3d8f
                © 2023 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 25 April 2023
                Categories
                Article
                Custom metadata
                jm3c00740
                jm3c00740

                Pharmaceutical chemistry
                Pharmaceutical chemistry

                Comments

                Comment on this article