Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
89
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cholesterol: Its Regulation and Role in Central Nervous System Disorders

      review-article
      1 , * , 2
      Cholesterol
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer's disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules). We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.

          Related collections

          Most cited references233

          • Record: found
          • Abstract: found
          • Article: not found

          Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families.

          The apolipoprotein E type 4 allele (APOE-epsilon 4) is genetically associated with the common late onset familial and sporadic forms of Alzheimer's disease (AD). Risk for AD increased from 20% to 90% and mean age at onset decreased from 84 to 68 years with increasing number of APOE-epsilon 4 alleles in 42 families with late onset AD. Thus APOE-epsilon 4 gene dose is a major risk factor for late onset AD and, in these families, homozygosity for APOE-epsilon 4 was virtually sufficient to cause AD by age 80.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models.

            Alzheimer's disease (AD) is associated with impaired clearance of β-amyloid (Aβ) from the brain, a process normally facilitated by apolipoprotein E (apoE). ApoE expression is transcriptionally induced through the action of the nuclear receptors peroxisome proliferator-activated receptor gamma and liver X receptors in coordination with retinoid X receptors (RXRs). Oral administration of the RXR agonist bexarotene to a mouse model of AD resulted in enhanced clearance of soluble Aβ within hours in an apoE-dependent manner. Aβ plaque area was reduced more than 50% within just 72 hours. Furthermore, bexarotene stimulated the rapid reversal of cognitive, social, and olfactory deficits and improved neural circuit function. Thus, RXR activation stimulates physiological Aβ clearance mechanisms, resulting in the rapid reversal of a broad range of Aβ-induced deficits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease.

              Apolipoprotein E is immunochemically localized to the senile plaques, vascular amyloid, and neurofibrillary tangles of Alzheimer disease. In vitro, apolipoprotein E in cerebrospinal fluid binds to synthetic beta A4 peptide (the primary constituent of the senile plaque) with high avidity. Amino acids 12-28 of the beta A4 peptide are required. The gene for apolipoprotein E is located on chromosome 19q13.2, within the region previously associated with linkage of late-onset familial Alzheimer disease. Analysis of apolipoprotein E alleles in Alzheimer disease and controls demonstrated that there was a highly significant association of apolipoprotein E type 4 allele (APOE-epsilon 4) and late-onset familial Alzheimer disease. The allele frequency of the APOE-epsilon 4 in 30 random affected patients, each from a different Alzheimer disease family, was 0.50 +/- 0.06; the allele frequency of APOE-epsilon 4 in 91 age-matched unrelated controls was 0.16 +/- 0.03 (Z = 2.44, P = 0.014). A functional role of the apolipoprotein E-E4 isoform in the pathogenesis of late-onset familial Alzheimer disease is suggested.
                Bookmark

                Author and article information

                Journal
                Cholesterol
                Cholesterol
                CHOL
                Cholesterol
                Hindawi Publishing Corporation
                2090-1283
                2090-1291
                2012
                17 October 2012
                : 2012
                : 292598
                Affiliations
                1Institut für Laboratoriumsmedizin, Vinzenz von Paul Kliniken gGmbH, Adlerstra β e 7, Postfach 103163, 70199 Stuttgart, Germany
                2Dipartimento di Scienze Farmacologiche e Biomolecolari, Facoltà di Farmacia, Università di Milano, Via Balzaretti 9, 20133 Milano, Italy
                Author notes
                *Matthias Orth: orth@ 123456vinzenz.de

                Academic Editor: Gloria L. Vega

                Article
                10.1155/2012/292598
                3483652
                23119149
                e22fdb13-19d9-455c-bf80-afdf30a8923e
                Copyright © 2012 M. Orth and S. Bellosta.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 July 2012
                : 3 September 2012
                : 10 September 2012
                Categories
                Review Article

                Cardiovascular Medicine
                Cardiovascular Medicine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content389

                Cited by95

                Most referenced authors2,919