16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stability of the Aryl hydrocarbon Receptor and its Regulated Genes in the Low activity Variant of Hepa-1 cell line

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We examined the expression kinetics of some of the aryl hydrocarbon receptor (AhR)-regulated genes in LA1 variant cells compared to wild type (WT) Hepa-1 mouse hepatoma cell lines, and we investigated the stability of AhR protein as a key step in the function of this receptor. Treatment of both cell types with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in increased CYP1A1 and CYP1B1 mRNA with a subsequent down regulation of AhR. We show here that co-treatment with transcription inhibitor actinomycin D (ActD) has reversed the TCDD-induced depletion of AhR protein in WT. However, the proteolytic degradation of AhR in absence of TCDD was significantly higher in LA1 cells than in WT, and ActD treatment reduced this loss. Induction of CYP1A1 and CYP1B1 mRNA by TCDD in WT cells each exhibited bursts of activity in the initial hour which were about 3-fold greater than in LAI cells. The induced mRNA levels in LA1 exhibited a slow and sustained increase approximating the WT levels by 20 h. The induction of two other AhR-regulated genes also showed comparable turnover differences between the two cell types. Thus, altered regulation of the AhR responsive genes in LA1 may result from a difference in AhR stability.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor.

          A cDNA encoding the murine Ah receptor (Ahb-1 allele for aromatic hydrocarbon responsiveness) has been isolated and characterized. Analysis of the deduced protein sequence revealed a region with similarity to the basic region/helix-loop-helix (BR/HLH) motif found in many transcription factors that undergo dimerization for function. In addition to the BR/HLH domain, the N-terminal domain of the Ah receptor has extensive sequence similarity to the human ARNT (aryl hydrocarbon receptor nuclear translocator) protein and two regulatory proteins of Drosophila, Sim and Per. Photoaffinity labeling and peptide mapping studies indicate that the Ah receptor binds agonist at a domain that lies within this conserved N-terminal domain. The Ah receptor appears to be a ligand-activated transcription factor with a helix-loop-helix motif similar to those found in a variety of DNA-binding proteins, including Myc and MyoD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity.

            Prior to ligand activation, the unactivated aryl hydrocarbon receptor (AhR) exists in a heterotetrameric 9S core complex consisting of the AhR ligand-binding subunit, a dimer of hsp90, and an unknown subunit. Here we report the purification of an approximately 38-kDa protein (p38) from COS-1 cell cytosol that is a member of this complex by coprecipitation with a FLAG-tagged AhR. Internal amino acid sequence information was obtained, and p38 was identified as the hepatitis B virus X-associated protein 2 (XAP2). The simian ortholog of XAP2 was cloned from a COS-1 cDNA library; it codes for a 330-amino-acid protein containing regions of homology to the immunophilins FKBP12 and FKBP52. A tetratricopeptide repeat (TPR) domain in the carboxy-terminal region of XAP2 was similar to the third and fourth TPR domains of human FKBP52 and the Saccharomyces cerevisiae transcriptional modulator SSN6, respectively. Polyclonal antibodies raised against XAP2 recognized p38 in the unliganded AhR complex in COS-1 and Hepa 1c1c7 cells. It was ubiquitously expressed in murine tissues at the protein and mRNA levels. It was not required for the assembly of an AhR-hsp90 complex in vitro. Additionally, XAP2 did not directly associate with hsp90 upon in vitro translation, but was present in a 9S form when cotranslated in vitro with murine AhR. XAP2 enhanced the ability of endogenous murine and human AhR complexes to activate a dioxin-responsive element-luciferase reporter twofold, following transient expression of XAP2 in Hepa 1c1c7 and HeLa cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aryl hydrocarbon receptor imported into the nucleus following ligand binding is rapidly degraded via the cytosplasmic proteasome following nuclear export.

              The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that dimerizes with the AHR nuclear translocator protein to mediate gene regulation. However, the AHR protein is rapidly depleted in vitro and in vivo following exposure to ligands. The purpose of the studies in this report was to characterize the mechanism of AHR degradation and determine the consequence of blocking the degradation process. Western blot and immunological analysis of rat smooth muscle (A7), murine Hepa-1, and human HepG2 cells show that ligand-induced degradation of AHR is blocked when the proteasome is inhibited by MG-132. AHR degradation is also blocked in Hepa-1 and HepG2 cells when nuclear export is inhibited with leptomycin B. Mutation of a putative nuclear export signal present in the AHR results in the accumulation of AHR in the nucleus and reduced levels of degradation following ligand exposure. In addition, inhibition of AHR degradation results in an increase in the concentration of AHR.AHR nuclear translocator complexes associated with DNA and extends the duration that the complex resides in the nucleus. These findings show that nuclear export and degradation of the AHR protein are two additional steps in the AHR-mediated signal transduction pathway and suggest novel areas for regulatory control.
                Bookmark

                Author and article information

                Journal
                7709027
                7774
                Toxicol Lett
                Toxicol. Lett.
                Toxicology letters
                0378-4274
                1879-3169
                24 February 2015
                28 January 2015
                4 March 2015
                04 March 2016
                : 233
                : 2
                : 59-67
                Affiliations
                [a ]Department of Biochemistry and Cancer Biology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, USA
                Author notes
                [* ]Corresponding author: Dr. Sakina E. Eltom, Tel: 615-327-5713; Fax: 615-327-6442; seltom@ 123456mmc.edu
                Article
                NIHMS661545
                10.1016/j.toxlet.2015.01.016
                4347865
                25637755
                e1a94349-3055-4cc0-9bae-500ed32739d0
                © 2015 Published by Elsevier Ireland Ltd.

                This manuscript version is made available under the CC BY-NC-ND 4.0 license.

                History
                Categories
                Article

                Toxicology
                hepa-1 cell line,cyp1a1,ahr turnover,rna stability
                Toxicology
                hepa-1 cell line, cyp1a1, ahr turnover, rna stability

                Comments

                Comment on this article