9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A data-driven framework to assess population dynamics during novel coronavirus outbreaks: A case study on Xiamen Island, China

      research-article
      , * ,
      PLOS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The outbreak of the Coronavirus Disease 2019 (COVID-19) has profoundly influenced daily life, necessitating the understanding of the relationship between the epidemic’s progression and population dynamics. In this study, we present a data-driven framework that integrates GIS-based data mining technology and a Susceptible, Exposed, Infected and Recovered (SEIR) model. This approach helps delineate population dynamics at the grid and community scales and analyze the impacts of government policies, urban functional areas, and intercity flows on population dynamics during the pandemic. Xiamen Island was selected as a case study to validate the effectiveness of the data-driven framework. The results of the high/low cluster analysis provide 99% certainty (P < 0.01) that the population distribution between January 23 and March 16, 2020, was not random, a phenomenon referred to as high-value clustering. The SEIR model predicts that a ten-day delay in implementing a lockdown policy during an epidemic can lead to a significant increase in the number of individuals infected by the virus. Throughout the epidemic prevention and control period (January 23 to February 21, 2020), residential and transportation areas housed more residents. After the resumption of regular activities, the population was mainly concentrated in residential, industrial, and transportation, as well as road facility areas. Notably, the migration patterns into and out of Xiamen were primarily centered on neighboring cities both before and after the outbreak. However, migration indices from cities outside the affected province drastically decreased and approached zero following the COVID-19 outbreak. Our findings offer new insights into the interplay between the epidemic’s development and population dynamics, which enhances the prevention and control of the coronavirus epidemic.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study

          Summary Background Since Dec 31, 2019, the Chinese city of Wuhan has reported an outbreak of atypical pneumonia caused by the 2019 novel coronavirus (2019-nCoV). Cases have been exported to other Chinese cities, as well as internationally, threatening to trigger a global outbreak. Here, we provide an estimate of the size of the epidemic in Wuhan on the basis of the number of cases exported from Wuhan to cities outside mainland China and forecast the extent of the domestic and global public health risks of epidemics, accounting for social and non-pharmaceutical prevention interventions. Methods We used data from Dec 31, 2019, to Jan 28, 2020, on the number of cases exported from Wuhan internationally (known days of symptom onset from Dec 25, 2019, to Jan 19, 2020) to infer the number of infections in Wuhan from Dec 1, 2019, to Jan 25, 2020. Cases exported domestically were then estimated. We forecasted the national and global spread of 2019-nCoV, accounting for the effect of the metropolitan-wide quarantine of Wuhan and surrounding cities, which began Jan 23–24, 2020. We used data on monthly flight bookings from the Official Aviation Guide and data on human mobility across more than 300 prefecture-level cities in mainland China from the Tencent database. Data on confirmed cases were obtained from the reports published by the Chinese Center for Disease Control and Prevention. Serial interval estimates were based on previous studies of severe acute respiratory syndrome coronavirus (SARS-CoV). A susceptible-exposed-infectious-recovered metapopulation model was used to simulate the epidemics across all major cities in China. The basic reproductive number was estimated using Markov Chain Monte Carlo methods and presented using the resulting posterior mean and 95% credibile interval (CrI). Findings In our baseline scenario, we estimated that the basic reproductive number for 2019-nCoV was 2·68 (95% CrI 2·47–2·86) and that 75 815 individuals (95% CrI 37 304–130 330) have been infected in Wuhan as of Jan 25, 2020. The epidemic doubling time was 6·4 days (95% CrI 5·8–7·1). We estimated that in the baseline scenario, Chongqing, Beijing, Shanghai, Guangzhou, and Shenzhen had imported 461 (95% CrI 227–805), 113 (57–193), 98 (49–168), 111 (56–191), and 80 (40–139) infections from Wuhan, respectively. If the transmissibility of 2019-nCoV were similar everywhere domestically and over time, we inferred that epidemics are already growing exponentially in multiple major cities of China with a lag time behind the Wuhan outbreak of about 1–2 weeks. Interpretation Given that 2019-nCoV is no longer contained within Wuhan, other major Chinese cities are probably sustaining localised outbreaks. Large cities overseas with close transport links to China could also become outbreak epicentres, unless substantial public health interventions at both the population and personal levels are implemented immediately. Independent self-sustaining outbreaks in major cities globally could become inevitable because of substantial exportation of presymptomatic cases and in the absence of large-scale public health interventions. Preparedness plans and mitigation interventions should be readied for quick deployment globally. Funding Health and Medical Research Fund (Hong Kong, China).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China.

            Y Guan (2003)
            A novel coronavirus (SCoV) is the etiological agent of severe acute respiratory syndrome (SARS). SCoV-like viruses were isolated from Himalayan palm civets found in a live-animal market in Guangdong, China. Evidence of virus infection was also detected in other animals (including a raccoon dog, Nyctereutes procyonoides) and in humans working at the same market. All the animal isolates retain a 29-nucleotide sequence that is not found in most human isolates. The detection of SCoV-like viruses in small, live wild mammals in a retail market indicates a route of interspecies transmission, although the natural reservoir is not known.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Analysis of Spatial Association by Use of Distance Statistics

                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ResourcesRole: SoftwareRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: MethodologyRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                PLOS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                10 November 2023
                2023
                : 18
                : 11
                : e0293803
                Affiliations
                [001] Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, China
                The University of Hong Kong, HONG KONG
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0002-0895-3418
                Article
                PONE-D-23-07370
                10.1371/journal.pone.0293803
                10637684
                37948384
                e182c9f5-58f4-49d2-88d4-1093710b81c4
                © 2023 Wang, Huang

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 March 2023
                : 19 October 2023
                Page count
                Figures: 8, Tables: 1, Pages: 21
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 41971231
                Award Recipient :
                This research was supported by the National Natural Science Foundation of China (Grant No. 41971231). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Population Biology
                Population Dynamics
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Viral Diseases
                Covid 19
                Earth Sciences
                Geography
                Human Geography
                Urban Geography
                Cities
                Social Sciences
                Human Geography
                Urban Geography
                Cities
                Earth Sciences
                Geomorphology
                Topography
                Landforms
                Islands
                Biology and Life Sciences
                Population Biology
                Population Metrics
                Population Density
                Medicine and Health Sciences
                Epidemiology
                Pandemics
                Earth Sciences
                Geography
                Human Geography
                Urban Geography
                Urban Areas
                Social Sciences
                Human Geography
                Urban Geography
                Urban Areas
                Earth Sciences
                Geography
                Geographic Areas
                Urban Areas
                Engineering and Technology
                Transportation
                Custom metadata
                All relevant data are within the manuscript and its Supporting Information files.
                COVID-19

                Uncategorized
                Uncategorized

                Comments

                Comment on this article