24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      18F-Sodium Fluoride PET as a Diagnostic Modality for Metabolic, Autoimmune, and Osteogenic Bone Disorders: Cellular Mechanisms and Clinical Applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In a healthy body, homeostatic actions of osteoclasts and osteoblasts maintain the integrity of the skeletal system. When cellular activities of osteoclasts and osteoblasts become abnormal, pathological bone conditions, such as osteoporosis, can occur. Traditional imaging modalities, such as radiographs, are insensitive to the early cellular changes that precede gross pathological findings, often leading to delayed disease diagnoses and suboptimal therapeutic strategies. 18F-sodium fluoride ( 18F-NaF)-positron emission tomography (PET) is an emerging imaging modality with the potential for early diagnosis and monitoring of bone diseases through the detection of subtle metabolic changes. Specifically, the dissociated 18F - is incorporated into hydroxyapatite, and its uptake reflects osteoblastic activity and bone perfusion, allowing for the quantification of bone turnover. While 18F-NaF-PET has traditionally been used to detect metastatic bone disease, recent literature corroborates the use of 18F-NaF-PET in benign osseous conditions as well. In this review, we discuss the cellular mechanisms of 18F-NaF-PET and examine recent findings on its clinical application in diverse metabolic, autoimmune, and osteogenic bone disorders.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Diagnosis and Management of Rheumatoid Arthritis

          Rheumatoid arthritis (RA) occurs in about 5 per 1000 people and can lead to severe joint damage and disability. Significant progress has been made over the past 2 decades regarding understanding of disease pathophysiology, optimal outcome measures, and effective treatment strategies, including the recognition of the importance of diagnosing and treating RA early.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An overview and management of osteoporosis.

            Osteoporosis -related to various factors including menopause and aging- is the most common chronic metabolic bone disease, which is characterized by increased bone fragility. Although it is seen in all age groups, gender, and races, it is more common in Caucasians (white race), older people, and women. With an aging population and longer life span, osteoporosis is increasingly becoming a global epidemic. Currently, it has been estimated that more than 200 million people are suffering from osteoporosis. According to recent statistics from the International Osteoporosis Foundation, worldwide, 1 in 3 women over the age of 50 years and 1 in 5 men will experience osteoporotic fractures in their lifetime. Every fracture is a sign of another impending one. Osteoporosis has no clinical manifestations until there is a fracture. Fractures cause important morbidity; in men, in particular, they can cause mortality. Moreover, osteoporosis results in a decreased quality of life, increased disability-adjusted life span, and big financial burden to health insurance systems of countries that are responsible for the care of such patients. With an early diagnosis of this disease before fractures occur and by assessing the bone mineral density and with early treatment, osteoporosis can be prevented. Therefore, increasing awareness among doctors, which, in turn, facilitates increase awareness of the normal populace, will be effective in preventing this epidemic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies

              Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that primarily affects the lining of the synovial joints and is associated with progressive disability, premature death, and socioeconomic burdens. A better understanding of how the pathological mechanisms drive the deterioration of RA progress in individuals is urgently required in order to develop therapies that will effectively treat patients at each stage of the disease progress. Here we dissect the etiology and pathology at specific stages: (i) triggering, (ii) maturation, (iii) targeting, and (iv) fulminant stage, concomitant with hyperplastic synovium, cartilage damage, bone erosion, and systemic consequences. Modern pharmacologic therapies (including conventional, biological, and novel potential small molecule disease-modifying anti-rheumatic drugs) remain the mainstay of RA treatment and there has been significant progress toward achieving disease remission without joint deformity. Despite this, a significant proportion of RA patients do not effectively respond to the current therapies and thus new drugs are urgently required. This review discusses recent advances of our  understanding of RA pathogenesis, disease modifying drugs, and provides perspectives on next generation therapeutics for RA.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                17 June 2021
                June 2021
                : 22
                : 12
                : 6504
                Affiliations
                [1 ]Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; peter.park@ 123456pennmedicine.upenn.edu (P.S.U.P.); william.raynor@ 123456pennmedicine.upenn.edu (W.Y.R.); tom.werner@ 123456pennmedicine.upenn.edu (T.J.W.); chamith@ 123456pennmedicine.upenn.edu (C.S.R.)
                [2 ]Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; yusha.sun@ 123456pennmedicine.upenn.edu
                [3 ]Department of Orthopaedic Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
                Author notes
                Article
                ijms-22-06504
                10.3390/ijms22126504
                8234710
                34204387
                e1711a84-3dc8-4d16-a474-6e35a265f69b
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 18 May 2021
                : 13 June 2021
                Categories
                Review

                Molecular biology
                18f-sodium fluoride,18f-naf,pet,osteoporosis,paget’s disease,hyperparathyroidism,ankylosing spondylitis,rheumatoid arthritis,osteosarcoma

                Comments

                Comment on this article