0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Smart Hesperidin/Chitosan Nanogel Mitigates Apoptosis and Endoplasmic Reticulum Stress in Fluoride and Aluminum-Induced Testicular Injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fluoride and aluminum are ubiquitous toxic metals with adverse reproductive effects. The citrus flavonoid hesperidin has protective activities but poor solubility and bioavailability. Nanoparticulate delivery systems can improve flavonoid effectiveness. We conducted this study to prepare a pH-responsive chitosan-based nanogel for hesperidin delivery and evaluate its effectiveness against sodium fluoride (NaF) and aluminum chloride (AlCl 3) induced testicular toxicity in mice. The nanogel was synthesized using 2 kGy gamma irradiation, enabling a size under 200 nm and enhanced hesperidin release at pH 6 matching testicular acidity. Male mice received 200 mg/kg AlCl 3 and 10 mg/kg NaF daily for 30 days. Hesperidin nanogel at 20 mg/kg was administered orally either prophylactically (pretreatment) or after intoxication (posttreatment). The results showed that AlCl 3 + NaF induced severe oxidative stress, hormonal disturbance, apoptosis, and endoplasmic reticulum stress, evidenced by significant changes in the studied parameters and testicular histological damage. Hesperidin nanogel administration significantly inhibited oxidative stress markers, restored luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone levels, and alleviated tissue damage compared to the intoxicated group. It also downregulated the expression level of pro-apoptotic genes Bax, caspase-3, caspase-9, and P38MAPK, while upregulating the expression level of the anti-apoptotic BCL2 gene. Endoplasmic reticulum stress sensors PERK, ATF6, and IRE-α were also downregulated by the nanogel. The chitosan-based nanogel enhanced the delivery and efficacy of poorly bioavailable hesperidin, exhibiting remarkable protective effects against AlCl 3 and NaF reproductive toxicity. This innovative nanosystem represents a promising approach to harnessing bioactive phytochemicals with delivery challenges, enabling protective effects against chemical-induced testicular damage.

          Graphical Abstract

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.

            Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca(2+), etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca(2+)). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo. Copyright © 2014 the American Physiological Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Toxicity, mechanism and health effects of some heavy metals

              Heavy metal toxicity has proven to be a major threat and there are several health risks associated with it. The toxic effects of these metals, even though they do not have any biological role, remain present in some or the other form harmful for the human body and its proper functioning. They sometimes act as a pseudo element of the body while at certain times they may even interfere with metabolic processes. Few metals, such as aluminium, can be removed through elimination activities, while some metals get accumulated in the body and food chain, exhibiting a chronic nature. Various public health measures have been undertaken to control, prevent and treat metal toxicity occurring at various levels, such as occupational exposure, accidents and environmental factors. Metal toxicity depends upon the absorbed dose, the route of exposure and duration of exposure, i.e. acute or chronic. This can lead to various disorders and can also result in excessive damage due to oxidative stress induced by free radical formation. This review gives details about some heavy metals and their toxicity mechanisms, along with their health effects.
                Bookmark

                Author and article information

                Contributors
                Nora.Diab20@fvtm.bu.edu.eg , no_ra_sa@yahoo.com
                Journal
                Biol Trace Elem Res
                Biol Trace Elem Res
                Biological Trace Element Research
                Springer US (New York )
                0163-4984
                1559-0720
                13 December 2023
                13 December 2023
                2024
                : 202
                : 9
                : 4106-4124
                Affiliations
                [1 ]Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Benha University, ( https://ror.org/03tn5ee41) Benha, Al Qalyubiyah Egypt
                [2 ]Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, ( https://ror.org/04hd0yz67) P.O. Box 13759, Cairo, Egypt
                [3 ]Department of Molecular Oncology, Cancer Institute (WIA), ( https://ror.org/01tc10z29) P.O. Box 600036, 38, Sardar Patel Road, Chennai, Tamilnadu, India
                [4 ]Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), ( https://ror.org/04hd0yz67) Cairo, Egypt
                Article
                3991
                10.1007/s12011-023-03991-8
                11252208
                38087036
                dd64750e-2849-4234-a02b-48e1aac0b003
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 October 2023
                : 29 November 2023
                Funding
                Funded by: Benha University
                Categories
                Research
                Custom metadata
                © Springer Science+Business Media, LLC, part of Springer Nature 2024

                Biochemistry
                hesperidin,nanogel,aluminum,fluoride,testicular damage
                Biochemistry
                hesperidin, nanogel, aluminum, fluoride, testicular damage

                Comments

                Comment on this article