23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pathogenicity and Virulence of Trueperella pyogenes: A Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacteria from the species Trueperella pyogenes are a part of the biota of skin and mucous membranes of the upper respiratory, gastrointestinal, or urogenital tracts of animals, but also, opportunistic pathogens. T. pyogenes causes a variety of purulent infections, such as metritis, mastitis, pneumonia, and abscesses, which, in livestock breeding, generate significant economic losses. Although this species has been known for a long time, many questions concerning the mechanisms of infection pathogenesis, as well as reservoirs and routes of transmission of bacteria, remain poorly understood. Pyolysin is a major known virulence factor of T. pyogenes that belongs to the family of cholesterol-dependent cytolysins. Its cytolytic activity is associated with transmembrane pore formation. Other putative virulence factors, including neuraminidases, extracellular matrix-binding proteins, fimbriae, and biofilm formation ability, contribute to the adhesion and colonization of the host tissues. However, data about the pathogen–host interactions that may be involved in the development of T. pyogenes infection are still limited. The aim of this review is to present the current knowledge about the pathogenic potential and virulence of T. pyogenes.

          Related collections

          Most cited references216

          • Record: found
          • Abstract: found
          • Article: not found

          Defining postpartum uterine disease in cattle.

          Uterine function is often compromised in cattle by bacterial contamination of the uterine lumen after parturition, and pathogenic bacteria often persist, causing uterine disease, a key cause of infertility in cattle. However, the definition or characterization of uterine disease frequently lacks precision or varies among research groups. The aim of the present paper was to provide clear clinical definitions of uterine disease that researchers could adopt. Puerperal metritis should be defined as an animal with an abnormally enlarged uterus and a fetid watery red-brown uterine discharge, associated with signs of systemic illness (decreased milk yield, dullness or other signs of toxemia) and fever > 39.5 degrees C, within 21 days after parturition. Animals that are not systemically ill, but have an abnormally enlarged uterus and a purulent uterine discharge detectable in the vagina, within 21 days post partum, may be classified as having clinical metritis. Clinical endometritis is characterised by the presence of purulent (> 50% pus) uterine discharge detectable in the vagina 21 days or more after parturition, or mucuopurulent (approximately 50% pus, 50% mucus) discharge detectable in the vagina after 26 days post partum. In the absence of clinical endometritis, a cow with subclinical endometritis is defined by > 18% neutrophils in uterine cytology samples collected 21-33 days post partum, or > 10% neutrophils at 34-47 days. Pyometra is defined as the accumulation of purulent material within the uterine lumen in the presence of a persistent corpus luteum and a closed cervix. In conclusion, we have suggested definitions for common postpartum uterine diseases, which can be readily adopted by researchers and veterinarians.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle.

            Uterine microbial disease affects half of all dairy cattle after parturition, causing infertility by disrupting uterine and ovarian function. Infection with Escherichia coli, Arcanobacterium pyogenes, and bovine herpesvirus 4 causes endometrial tissue damage. Toll-like receptors on endometrial cells detect pathogen-associated molecules such as bacterial DNA, lipids, and lipopolysaccharide (LPS), leading to secretion of cytokines, chemokines, and antimicrobial peptides. Chemokines attract neutrophils and macrophages to eliminate the bacteria, although persistence of neutrophils is associated with subclinical endometritis and infertility. Cows with uterine infections are less likely to ovulate because they have slower growth of the postpartum dominant follicle in the ovary, lower peripheral plasma estradiol concentrations, and perturbation of hypothalamic and pituitary function. The follicular fluid of animals with endometritis contains LPS, which is detected by the TLR4/CD14/LY96 (MD2) receptor complex on granulosa cells, leading to lower aromatase expression and reduced estradiol secretion. If cows with uterine disease ovulate, the peripheral plasma concentrations of progesterone are lower than those in normal animals. However, luteal phases are often extended in animals with uterine disease, probably because infection switches the endometrial epithelial secretion of prostaglandins from the F series to the E series by a phospholipase A2-mediated mechanism, which would disrupt luteolysis. The regulation of endometrial immunity depends on steroid hormones, somatotrophins, and local regulatory proteins. Advances in knowledge about infection and immunity in the female genital tract should be exploited to develop new therapeutics for uterine disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence.

              Corynebacterium pseudotuberculosis is the etiological agent of caseous lymphadenitis (CLA), a common disease in small ruminant populations throughout the world. Once established, this disease is difficult to eradicate because drug therapy is not effective and because the clinical detection of infected animals is of limited efficiency. We reviewed the microbiological, biochemical and taxonomic features of C. pseudotuberculosis, general aspects of infection, the main virulence determinants and currently available commercial vaccines. We also examined the current molecular strategies for the study of virulence in C. pseudotuberculosis, including the latest research on the identification of novel virulence factors and genes, which will help us to better understand the biology of this microorganism. This knowledge may also contribute to the development of improved CLA vaccines, including subunit and DNA-based types, as well as to improve the diagnosis, treatment and control of this disease.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                04 June 2019
                June 2019
                : 20
                : 11
                : 2737
                Affiliations
                Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; ewelina1708@ 123456gmail.com (E.K.); dorota.chrobak@ 123456wp.pl (D.C.-C.); magdakiz@ 123456wp.pl (M.K.-Ś.); i.stefanska@ 123456gmail.com (I.S.); malgorzata_gierynska@ 123456sggw.pl (M.G.)
                Author notes
                [* ]Correspondence: magdalena_rzewuska@ 123456sggw.pl ; Tel.: +48-225936032
                Author information
                https://orcid.org/0000-0002-9504-430X
                Article
                ijms-20-02737
                10.3390/ijms20112737
                6600626
                31167367
                e17109c6-2ad7-4cb7-9cb6-daef4e20b4b0
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 May 2019
                : 31 May 2019
                Categories
                Review

                Molecular biology
                trueperella pyogenes,virulence,pyolysin,infection,pathogenicity,immune response,actinomycetales

                Comments

                Comment on this article