21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nitrate and Nitrite Variability at the Seafloor of an Oxygen Minimum Zone Revealed by a Novel Microfluidic In-Situ Chemical Sensor

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (ΣNO x) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ΣNO x concentration, with 15.2 to 23.4 μM (median=18.3 μM); while at the 100 site ΣNO x varied between 21.0 and 30.1 μM over 40 hours (median = 25.1μM). The 170 m site had the highest median ΣNO x level (25.8 μM) with less variability (22.8 to 27.7 μM). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 μM in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre.

          Concentrations of dissolved inorganic carbon (DIC) decrease in the surface mixed layers during spring and summer in most of the oligotrophic ocean. Mass balance calculations require that the missing DIC is converted into particulate carbon by photosynthesis. This DIC uptake represents one of the largest components of net community production in the world ocean. However, mixed-layer waters in these regions of the ocean typically contain negligible concentrations of plant nutrients such as nitrate and phosphate. Combined nutrient supply mechanisms including nitrogen fixation, diffusive transport and vertical entrainment are believed to be insufficient to supply the required nutrients for photosynthesis. The basin-scale potential for episodic nutrient transport by eddy events is unresolved. As a result, it is not understood how biologically mediated DIC uptake can be supported in the absence of nutrients. Here we report on high-resolution measurements of nitrate (NO(3)(-)) and oxygen (O(2)) concentration made over 21 months using a profiling float deployed near the Hawaii Ocean Time-series station in the North Pacific subtropical gyre. Our measurements demonstrate that as O(2) was produced and DIC was consumed over two annual cycles, a corresponding seasonal deficit in dissolved NO(3)(-) appeared in water at depths from 100 to 250 m. The deep-water deficit in NO(3)(-) was in near-stoichiometric balance with the fixed nitrogen exported to depth. Thus, when the water column from the surface to 250 m is considered as a whole, there is near equivalence between nutrient supply and demand. Short-lived transport events (<10 days) that connect deep stocks of nitrate to nutrient-poor surface waters were clearly present in 12 of the 127 vertical profiles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Nitrogen Fixation in Denitrified Marine Waters

            Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria), whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria). Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP), a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ). Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m−2 d−1). Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m−2 d−1) than the oxic euphotic layer (48±68 µmol m−2 d−1). Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lab-on-chip measurement of nitrate and nitrite for in situ analysis of natural waters.

              Microfluidic technology permits the miniaturization of chemical analytical methods that are traditionally undertaken using benchtop equipment in the laboratory environment. When applied to environmental monitoring, these "lab-on-chip" systems could allow high-performance chemical analysis methods to be performed in situ over distributed sensor networks with large numbers of measurement nodes. Here we present the first of a new generation of microfluidic chemical analysis systems with sufficient analytical performance and robustness for deployment in natural waters. The system detects nitrate and nitrite (up to 350 μM, 21.7 mg/L as NO(3)(-)) with a limit of detection (LOD) of 0.025 μM for nitrate (0.0016 mg/L as NO(3)(-)) and 0.02 μM for nitrite (0.00092 mg/L as NO(2)(-)). This performance is suitable for almost all natural waters (apart from the oligotrophic open ocean), and the device was deployed in an estuarine environment (Southampton Water) to monitor nitrate+nitrite concentrations in waters of varying salinity. The system was able to track changes in the nitrate-salinity relationship of estuarine waters due to increased river flow after a period of high rainfall. Laboratory characterization and deployment data are presented, demonstrating the ability of the system to acquire data with high temporal resolution.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                10 July 2015
                2015
                : 10
                : 7
                : e0132785
                Affiliations
                [1 ]GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
                [2 ]Middle East Technical University (METU), Institute of Marine Sciences, Erdemli, Mersin, Turkey
                [3 ]National Oceanography Centre Southampton, Ocean Technology and Engineering Group, Southampton, United Kingdom
                [4 ]DLR German Aerospace Center, Institute for Planetary Science, Berlin, Germany
                University of California, Merced, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MY ADB MD MCM FS SS. Performed the experiments: MY MD SS. Analyzed the data: MY ADB MD SS. Contributed reagents/materials/analysis tools: ADB MD MCM FS. Wrote the paper: MY ADB MD MCM FS SS.

                Article
                PONE-D-15-10950
                10.1371/journal.pone.0132785
                4498834
                26161958
                e0de18e2-f154-4674-b0ad-9cf31996834f
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 13 March 2015
                : 19 June 2015
                Page count
                Figures: 7, Tables: 2, Pages: 16
                Funding
                This study was supported by the Helmholtz-Alliance ROBEX (Robotic Exploration of Extreme Environments - http://www.robex-allianz.de/en, funds to SS, FS) and the collaborative research center Climate-Biogeochemistry Interactions in the Tropical Ocean (SFB754 - www.sfb754.de, funds to SS, MD).
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article