32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functionalized Magnetic Nanoparticles and Their Effect onEscherichia coliandStaphylococcus aureus

      , , ,
      Journal of Nanomaterials
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Magnetite (Fe 3O 4) nanoparticles were prepared using coprecipitation and subsequently surface-functionalized with 3-aminopropyltriethoxysilane (APTS), polyethylene glycol (PEG), and tetraethoxysilane (TEOS). Nanoparticle morphology was characterized using scanning electron microscopy, while structure and stability were assessed through infrared spectroscopy and zeta potential, respectively. Average size of the nanoparticles analysed by dynamic light scattering was 89 nm, 123 nm, 109 nm, and 130 nm for unmodified magnetite and APTS-, PEG-, and TEOS-modified magnetite nanoparticles, respectively. Biological effect was studied on two bacterial strains: Gram-negative Escherichia coliCCM 3954 and Gram-positive Staphylococcus aureusCCM 3953. Most of modified magnetite nanoparticles had a significant effect on S. aureusand not on E. coli, whereas PEG-magnetite nanoparticles displayed no significant effect on the growth rate of either bacteria.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Amino-functionalized Fe(3)O(4)@SiO(2) core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal.

          A novel amino-functionalized Fe(3)O(4)@SiO(2) magnetic nanomaterial with a core-shell structure was developed, aiming to remove heavy metal ions from aqueous media. The structural, surface, and magnetic characteristics of the nanosized adsorbent were investigated by elemental analysis, FTIR, N(2) adsorption-desorption, transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, and zeta-potential measurement. The amino-functionalized Fe(3)O(4)@SiO(2) nanoadsorbent exhibited high adsorption affinity for aqueous Cu(II), Pb(II), and Cd(II) ions, resulting from complexation of the metal ions by surface amino groups. Moreover, the adsorption affinity for heavy metal ions was not much impacted by the presence of a cosolute of humic acid (10.6mg/L) or alkali/earth metal ions (Na(+), K(+), Mg(2+)) (0.025-0.30mmol/L). The metal-loaded Fe(3)O(4)@SiO(2)-NH(2) nanoparticles could be recovered readily from aqueous solution by magnetic separation and regenerated easily by acid treatment. Findings of the present work highlight the potential for using amino-functionalized Fe(3)O(4)@SiO(2) magnetic nanoparticles as an effective and recyclable adsorbent for the removal of heavy metal ions in water and wastewater treatment. Copyright 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prokaryotic origin of the actin cytoskeleton.

            It was thought until recently that bacteria lack the actin or tubulin filament networks that organize eukaryotic cytoplasm. However, we show here that the bacterial MreB protein assembles into filaments with a subunit repeat similar to that of F-actin-the physiological polymer of eukaryotic actin. By elucidating the MreB crystal structure we demonstrate that MreB and actin are very similar in three dimensions. Moreover, the crystals contain protofilaments, allowing visualization of actin-like strands at atomic resolution. The structure of the MreB protofilament is in remarkably good agreement with the model for F-actin, showing that the proteins assemble in identical orientations. The actin-like properties of MreB explain the finding that MreB forms large fibrous spirals under the cell membrane of rod-shaped cells, where they are involved in cell-shape determination. Thus, prokaryotes are now known to possess homologues both of tubulin, namely FtsZ, and of actin.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach

                Bookmark

                Author and article information

                Journal
                Journal of Nanomaterials
                Journal of Nanomaterials
                Hindawi Limited
                1687-4110
                1687-4129
                2015
                2015
                : 2015
                :
                : 1-10
                Article
                10.1155/2015/416012
                e09bfc2b-76f4-403b-a70b-e64c21dd3123
                © 2015

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content841

                Cited by9

                Most referenced authors602