Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
137
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The plant-specific WRKY transcription factor (TF) family with 74 members in Arabidopsis thaliana appears to be involved in the regulation of various physiological processes including plant defence and senescence. WRKY53 and WRKY70 were previously implicated as positive and negative regulators of senescence, respectively. Here the putative function of other WRKY group III proteins in Arabidopsis leaf senescence has been explored and the results suggest the involvement of two additional WRKY TFs, WRKY 54 and WRKY30, in this process. The structurally related WRKY54 and WRKY70 exhibit a similar expression pattern during leaf development and appear to have co-operative and partly redundant functions in senescence, as revealed by single and double mutant studies. These two negative senescence regulators and the positive regulator WRKY53 were shown by yeast two-hydrid analysis to interact independently with WRKY30. WRKY30 was expressed during developmental leaf senescence and consequently it is hypothesized that the corresponding protein could participate in a senescence regulatory network with the other WRKYs. Expression in wild-type and salicylic acid-deficient mutants suggests a common but not exclusive role for SA in induction of WRKY30, 53, 54, and 70 during senescence. WRKY30 and WRKY53 but not WRKY54 and WRKY70 are also responsive to additional signals such as reactive oxygen species. The results suggest that WRKY53, WRKY54, and WRKY70 may participate in a regulatory network that integrates internal and environmental cues to modulate the onset and the progression of leaf senescence, possibly through an interaction with WRKY30.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          AtNAP, a NAC family transcription factor, has an important role in leaf senescence.

          Leaf senescence is a unique developmental process that is characterized by massive programmed cell death and nutrient recycling. The underlying molecular regulatory mechanisms are not well understood. Here we report the functional analysis of AtNAP, a gene encoding a NAC family transcription factor. Expression of this gene is closely associated with the senescence process of Arabidopsis rosette leaves. Leaf senescence in two T-DNA insertion lines of this gene is significantly delayed. The T-DNA knockout plants are otherwise normal. The mutant phenotype can be restored to wild-type by the intact AtNAP, as well as by its homologs in rice and kidney bean plants that are also upregulated during leaf senescence. Furthermore, inducible overexpression of AtNAP causes precocious senescence. These data strongly suggest that AtNAP and its homologs play an important role in leaf senescence in Arabidopsis and possibly in other plant species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism.

            We used loss-of-function mutants to study three Arabidopsis thaliana sensor histidine kinases, AHK2, AHK3, and CRE1/AHK4, known to be cytokinin receptors. Mutant seeds had more rapid germination, reduced requirement for light, and decreased far-red light sensitivity, unraveling cytokinin functions in seed germination control. Triple mutant seeds were more than twice as large as wild-type seeds. Genetic analysis indicated a cytokinin-dependent endospermal and/or maternal control of embryo size. Unchanged red light sensitivity of mutant hypocotyl elongation suggests that previously reported modulation of red light signaling by A-type response regulators may not depend on cytokinin. Combined loss of AHK2 and AHK3 led to the most prominent changes during vegetative development. Leaves of ahk2 ahk3 mutants formed fewer cells, had reduced chlorophyll content, and lacked the cytokinin-dependent inhibition of dark-induced chlorophyll loss, indicating a prominent role of AHK2 and, particularly, AHK3 in the control of leaf development. ahk2 ahk3 double mutants developed a strongly enhanced root system through faster growth of the primary root and, more importantly, increased branching. This result supports a negative regulatory role for cytokinin in root growth regulation. Increased cytokinin content of receptor mutants indicates a homeostatic control of steady state cytokinin levels through signaling. Together, the analyses reveal partially redundant functions of the cytokinin receptors and prominent roles for the AHK2/AHK3 receptor combination in quantitative control of organ growth in plants, with opposite regulatory functions in roots and shoots.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis.

              An analysis of changes in global gene expression patterns during developmental leaf senescence in Arabidopsis has identified more than 800 genes that show a reproducible increase in transcript abundance. This extensive change illustrates the dramatic alterations in cell metabolism that underpin the developmental transition from a photosynthetically active leaf to a senescing organ which functions as a source of mobilizable nutrients. Comparison of changes in gene expression patterns during natural leaf senescence with those identified, when senescence is artificially induced in leaves induced to senesce by darkness or during sucrose starvation-induced senescence in cell suspension cultures, has shown not only similarities but also considerable differences. The data suggest that alternative pathways for essential metabolic processes such as nitrogen mobilization are used in different senescent systems. Gene expression patterns in the senescent cell suspension cultures are more similar to those for dark-induced senescence and this may be a consequence of sugar starvation in both tissues. Gene expression analysis in senescing leaves of plant lines defective in signalling pathways involving salicylic acid (SA), jasmonic acid (JA) and ethylene has shown that these three pathways are all required for expression of many genes during developmental senescence. The JA/ethylene pathways also appear to operate in regulating gene expression in dark-induced and cell suspension senescence whereas the SA pathway is not involved. The importance of the SA pathway in the senescence process is illustrated by the discovery that developmental leaf senescence, but not dark-induced senescence, is delayed in plants defective in the SA pathway.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press
                0022-0957
                1460-2431
                April 2012
                20 January 2012
                20 January 2012
                : 63
                : 7
                : 2667-2679
                Affiliations
                Viikki Biocenter, Department of Biosciences, Division of Genetics, University of Helsinki, FIN-00014, Helsinki, Finland
                Author notes
                [* ]To whom correspondence should be addressed. E-mail: tapio.palva@ 123456helsinki.fi
                [†]

                Université François Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, 37200 Tours, France.

                Article
                10.1093/jxb/err450
                3346227
                22268143
                e06aac53-424e-4486-b8ef-f071ce2e619e
                © 2012 The Author(s).

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)

                History
                : 2 August 2011
                : 22 November 2011
                : 15 December 2011
                Page count
                Pages: 13
                Categories
                Research Papers

                Plant science & Botany
                sa,senescence,ros,wrky transcription factors,arabidopsis thaliana
                Plant science & Botany
                sa, senescence, ros, wrky transcription factors, arabidopsis thaliana

                Comments

                Comment on this article