11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Coinfection of avian influenza virus (H9N2 subtype) with infectious bronchitis live vaccine

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Avian influenza virus of H9N2 subtype is pathotyped as a non-highly pathogenic virus. However, frequent incidences of avian influenza of high mortality that are caused by H9N2 viruses have been observed in broiler chicken farms in Iran and some other Asian countries. Coinfections or environmental factors may be involved in such cases. Infectious microorganisms have been implicating in taking part in the cases of coinfection. We studied the effect of experimental coinfection of H9N2 avian influenza virus with infectious bronchitis live vaccine, which is used extensively in chicken farms in Iran. Clinical signs, gross lesions, viral shedding and mortality rate of the experimentally infected birds were examined. Coinfection of infectious bronchitis live vaccine and H9N2 avian influenza virus led to an extension of the shedding period of H9N2 virus, increasing the severity of clinical signs and mortality rates, causing macroscopic lesions in the embryos.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls.

          In wild aquatic birds and poultry around the world, influenza A viruses carrying 15 antigenic subtypes of hemagglutinin (HA) and 9 antigenic subtypes of neuraminidase (NA) have been described. Here we describe a previously unidentified antigenic subtype of HA (H16), detected in viruses circulating in black-headed gulls in Sweden. In agreement with established criteria for the definition of antigenic subtypes, hemagglutination inhibition assays and immunodiffusion assays failed to detect specific reactivity between H16 and the previously described subtypes H1 to H15. Genetically, H16 HA was found to be distantly related to H13 HA, a subtype also detected exclusively in shorebirds, and the amino acid composition of the putative receptor-binding site of H13 and H16 HAs was found to be distinct from that in HA subtypes circulating in ducks and geese. The H16 viruses contained NA genes that were similar to those of other Eurasian shorebirds but genetically distinct from N3 genes detected in other birds and geographical locations. The European gull viruses were further distinguishable from other influenza A viruses based on their PB2, NP, and NS genes. Gaining information on the full spectrum of avian influenza A viruses and creating reagents for their detection and identification will remain an important task for influenza surveillance, outbreak control, and animal and public health. We propose that sequence analyses of HA and NA genes of influenza A viruses be used for the rapid identification of existing and novel HA and NA subtypes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review of avian influenza in different bird species.

            Only type A influenza viruses are known to cause natural infections in birds, but viruses of all 15 haemagglutinin and all nine neuraminidase influenza A subtypes in the majority of possible combinations have been isolated from avian species. Influenza A viruses infecting poultry can be divided into two distinct groups on the basis of their ability to cause disease. The very virulent viruses cause highly pathogenic avian influenza (HPAI), in which mortality may be as high as 100%. These viruses have been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. All other viruses cause a much milder, primarily respiratory disease, which may be exacerbated by other infections or environmental conditions. Since 1959, primary outbreaks of HPAI in poultry have been reported 17 times (eight since 1990), five in turkeys and 12 in chickens. HPAI viruses are rarely isolated from wild birds, but extremely high isolation rates of viruses of low virulence for poultry have been recorded in surveillance studies, giving overall figures of about 15% for ducks and geese and around 2% for all other species. Influenza viruses have been shown to affect all types of domestic or captive birds in all areas of the world, but the frequency with which primary infections occur in any type of bird depends on the degree of contact there is with feral birds. Secondary spread is usually associated with human involvement, probably by transferring infective faeces from infected to susceptible birds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Host cell proteases controlling virus pathogenicity.

              The majority of viral glycoproteins that undergo post-translational proteolysis are cleaved by ubiquitous intracellular proteases; however, a minority are cleaved by secreted proteases available only in a few host systems. The interplay of viral glycoproteins and cellular proteases may have a pivotal role in the spread of infection, host range and pathogenicity.
                Bookmark

                Author and article information

                Contributors
                +98-711-2286940 , nili@shirazu.ac.ir
                Journal
                Arch Virol
                Arch. Virol
                Archives of Virology
                Springer Vienna (Vienna )
                0304-8608
                1432-8798
                5 February 2008
                2008
                : 153
                : 4
                : 651-655
                Affiliations
                [1 ]GRID grid.412573.6, ISNI 0000000107451259, Poultry Research Center, School of Veterinary Medicine, , Shiraz University, ; P.O. Box 1731, 71345 Shiraz, Iran
                [2 ]GRID grid.418970.3, Razi Vaccine and Serum Research Institute, ; P.O. Box: 11365-1558, Tehran, Iran
                [3 ]Group of Veterinary Medicine, Darab Branch, Islamic Azad University (IAU), Darab, Iran
                Article
                33
                10.1007/s00705-008-0033-x
                7086985
                18247102
                e01c4222-8e99-4f10-afcd-4d89d70a74c0
                © Springer-Verlag 2008

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 16 January 2007
                : 12 December 2007
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag 2008

                Microbiology & Virology
                avian influenza,h9n2 virus,avian influenza virus,infectious bronchitis virus,allantoic fluid

                Comments

                Comment on this article