11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Prevalence of avian respiratory viruses in broiler flocks in Egypt

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, respiratory viral pathogens were screened using real-time RT-PCR in 86 broiler chicken flocks suffering from respiratory diseases problems in 4 Egyptian governorates between January 2012 and February 2014. The mortality rates in the investigated flocks ranged from 1 to 47%. Results showed that mixed infection represented 66.3% of the examined flocks. Mixed infectious bronchitis (IBV) and avian influenza (AI)-H9N2 viruses were the most common infection (41.7%). Lack of AI-H9N2 vaccination and high rates of mixed infections in which AI-H9N2 is involved indicate an early AI-H9N2 infection with a potential immunosuppressive effect that predisposes for other viral infections. High pathogenic AI-H5N1 and virulent Newcastle disease virus (vNDV) infections were also detected (26.7% and 8.1%, respectively). Interestingly, co-infection of AI-H9N2 with either AIV-H5N1 or vNDV rarely resulted in high mortality. Partial cell-mediated immunity against similar internal AI genes, as well as virus interference between AI and vNDV, could be an explanation for this. Highly prevalent IBV and AI-H9N2 were isolated and were molecularly characterized based on S1 gene hypervariable region 3 ( HVR3) and hemagglutinin gene (HA) sequences, respectively. IBV strains were related to the variant group of IBV with multiple mutations in HVR3. Though AI-H9N2 viruses showed low rate of evolution in comparison to recent strains, few amino acid substitutions indicative of antibody selection pressure were observed in the HA gene. In conclusion, mixed viral infections, especially with IBV and AI-H9N2 viruses, are the predominant etiology of respiratory disease problems in broiler chickens in Egypt. Further investigations of the role of AI, IBV, and ND viruses’ co-infections and interference in terms of altering the severity of clinical signs and lesions and/or generating novel reassortants within each virus are needed.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Host cell proteases controlling virus pathogenicity.

          The majority of viral glycoproteins that undergo post-translational proteolysis are cleaved by ubiquitous intracellular proteases; however, a minority are cleaved by secreted proteases available only in a few host systems. The interplay of viral glycoproteins and cellular proteases may have a pivotal role in the spread of infection, host range and pathogenicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development and evaluation of a real-time Taqman RT-PCR assay for the detection of infectious bronchitis virus from infected chickens

            It is important to rapidly differentiate infectious bronchitis virus (IBV) from disease agents like highly pathogenic avian influenza virus and exotic Newcastle disease virus, which can be extremely similar in the early stages of their pathogenesis. In this study, we report the development and testing of a real-time RT-PCR assay using a Taqman®-labeled probe for early and rapid detection of IBV. The assay amplifies a 143-bp product in the 5′-UTR of the IBV genome and has a limit of detection and quantification of 100 template copies per reaction. All 15 strains of IBV tested as well as two Turkey coronavirus strains were amplified, whereas none of the other pathogens examined, tested positive. Evaluation of the assay was completed with 1329 tracheal swab samples. A total of 680 samples collected from IBV antibody negative birds were negative for IBV by the real-time RT-PCR assay. We tested 229 tracheal swabs submitted to two different diagnostic laboratories and found 79.04% of the tracheal swabs positive for IBV by real-time RT-PCR, whereas only 27.51% of the samples were positive by virus isolation, which is the reference standard test. We also collected a total of 120 tracheal swabs at six different time points from birds experimentally infected with different dosages of IBV and found that, independent of the dose given, the viral load in the trachea plateau at 5 days post-inoculation. In addition, an inverse relationship between the dose of virus given and the viral load at 14 days post-inoculation was observed. Finally, we tested 300 total tracheal swab samples, from a flock of commercial broilers spray vaccinated for IBV in the field. The percentage of birds infected with the IBV vaccine at 3, 7, and 14 days post-vaccination was 58%, 65%, and 83%, respectively, indicating that only slightly more than half the birds were initially infected then the vaccine was subsequently transmitted to other birds in the flock. This observation is significant because coronaviruses, which have a high mutation rate, can revert to pathogenicity when bird-to-bird transmission occurs. The real-time RT-PCR test described herein can be used to rapidly distinguish IBV from other respiratory pathogens, which is important for control of this highly infectious virus. The test was extremely sensitive and specific, and can be used to quantitate viral genomic RNA in clinical samples.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong?

              The origin of the H5N1 influenza viruses that killed six of eighteen infected humans in 1997 and were highly pathogenic in chickens has not been resolved. These H5N1 viruses transmitted directly to humans from infected poultry. In the poultry markets in Hong Kong, both H5N1 and H9N2 influenza viruses were cocirculating, raising the possibility of genetic reassortment. Here we analyze the antigenic and genetic features of H9N2 influenza viruses with different epidemiological backgrounds. The results suggest that the H9N2 influenza viruses of domestic ducks have become established in the domestic poultry of Asia. Phylogenetic and antigenic analyses of the H9N2 viruses isolated from Hong Kong markets suggest three distinct sublineages. Among the chicken H9N2 viruses, six of the gene segments were apparently derived from an earlier chicken H9N2 virus isolated in China, whereas the PB1 and PB2 genes are closely related to those of the H5N1 viruses and a quail H9N2 virus-A/quail/Hong Kong/G1/97 (Qa/HK/G1/97)-suggesting that many of the 1997 chicken H9 isolates in the markets were reassortants. The similarity of the internal genes of Qa/HK/G1/97 virus to those of the H5N1 influenza viruses suggests that the quail virus may have been the internal gene donor. Our findings indicate that the human and poultry H5N1 influenza viruses in Hong Kong in 1997 were reassortants that obtained internal gene segments from Qa/HK/G1/97. However, we cannot be certain whether the replicate complex of H5N1 originated from Qa/HK/G1/97 or whether the reverse transfer occurred; the available evidence supports the former proposal.
                Bookmark

                Author and article information

                Journal
                Poult Sci
                Poult. Sci
                ps
                poultrysci
                Poultry Science
                Poultry Science Association, Inc.
                0032-5791
                1525-3171
                June 2016
                14 March 2016
                14 March 2016
                : 95
                : 6
                : 1271-1280
                Affiliations
                [1]Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
                Author notes
                [1 ]Corresponding author: mfelkady@ 123456yahoo.com
                Article
                10.3382/ps/pew068
                7107169
                26976895
                00cc4356-98c7-49ef-a879-d7463329288e
                © 2016 Poultry Science Association Inc.

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                : 28 December 2015
                : 26 October 2015
                Page count
                Pages: 10
                Categories
                Immunology, Health and Disease

                chicken,egypt,h9n2,infectious bronchitis,respiratory outbreaks

                Comments

                Comment on this article