45
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bisphenol A and Metabolic Syndrome: Results from NHANES

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background. Bisphenol A (BPA) is detected in the urine of >95% of US adults. Recent evidence from population-based studies suggests that BPA is associated with individual components for metabolic syndrome (MetS). However, no previous study has examined the direct association between BPA and MetS. Methods. We examined 2,104 participants from the National Health and Nutrition Examination Survey 2003–2008. The main outcome was the presence of MetS ( n = 741). Results. Increasing levels of urinary BPA were positively associated with MetS, independent of confounders such as age, gender, race/ethnicity, smoking, alcohol intake, physical activity, and urinary creatinine. Compared to tertile 1 (referent), the multivariable adjusted odds ratio (95% confidence interval) of MetS in tertile 3 was 1.51 (1.07–2.12); P-trend was 0.02. Conclusions. Urinary BPA levels are positively associated with MetS, in a representative sample of US adults and independent of traditional risk factors for MetS. Future, prospective studies are needed to confirm our findings.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Exposure of the U.S. Population to Bisphenol A and 4-tertiary-Octylphenol: 2003–2004

          Background Bisphenol A (BPA) and 4-tertiary-octylphenol (tOP) are industrial chemicals used in the manufacture of polycarbonate plastics and epoxy resins (BPA) and nonionic surfactants (tOP). These products are in widespread use in the United States. Objectives We aimed to assess exposure to BPA and tOP in the U.S. general population. Methods We measured the total (free plus conjugated) urinary concentrations of BPA and tOP in 2,517 participants ≥ 6 years of age in the 2003–2004 National Health and Nutrition Examination Survey using automated solid-phase extraction coupled to isotope dilution–high-performance liquid chromatography–tandem mass spectrometry. Results BPA and tOP were detected in 92.6% and 57.4% of the persons, respectively. Least square geometric mean (LSGM) concentrations of BPA were significantly lower in Mexican Americans than in non-Hispanic blacks (p = 0.006) and non-Hispanic whites (p = 0.007); LSGM concentrations for non-Hispanic blacks and non-Hispanic whites were not statistically different (p = 0.21). Females had statistically higher BPA LSGM concentrations than males (p = 0.043). Children had higher concentrations than adolescents (p $45,000/year). Conclusions Urine concentrations of total BPA differed by race/ethnicity, age, sex, and household income. These first U.S. population representative concentration data for urinary BPA and tOP should help guide public health research priorities, including studies of exposure pathways, potential health effects, and risk assessment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polycystic Ovary Syndrome

            New England Journal of Medicine, 352(12), 1223-1236
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Urinary Concentrations of Bisphenol A and 4-Nonylphenol in a Human Reference Population

              Bisphenol A (BPA) is used to manufacture polycarbonate plastic and epoxy resins, which are used in baby bottles, as protective coatings on food containers, and for composites and sealants in dentistry. 4-Nonylphenol (NP) is used to make nonylphenol ethoxylates, nonionic surfactants applied as emulsifying, wetting, dispersing, or stabilizing agents in industrial, agricultural, and domestic consumer products. The potential for human exposure to BPA and NP is high because of their widespread use. We measured BPA and NP in archived urine samples from a reference population of 394 adults in the United States using isotope-dilution gas chromatography/mass spectrometry. The concentration ranges of BPA and NP were similar to those observed in other human populations. BPA was detected in 95% of the samples examined at concentrations ≥0.1 μg/L urine; the geometric mean and median concentrations were 1.33 μg/L (1.36 μg/g creatinine) and 1.28 μg/L (1.32 μg/g creatinine), respectively; the 95th percentile concentration was 5.18 μg/L (7.95 μg/g creatinine). NP was detected in 51% of the samples examined ≥0.1 μg/L. The median and 95th percentile concentrations were < 0.1 μg/L and 1.57 μg/L (1.39 μg/g creatinine), respectively. The frequent detection of BPA suggests widespread exposure to this compound in residents of the United States. The lower frequency of detection of NP than of BPA could be explained by a lower exposure of humans to NP, by different pharmacokinetic factors (i.e., absorption, distribution, metabolism, elimination), by the fact that 4-n-nonylphenol—the measured NP isomer—represents a small percentage of the NP used in commercial mixtures, or a combination of all of the above. Additional research is needed to determine the best urinary biomarker(s) to assess exposure to NP. Despite the sample population’s nonrepresentativeness of the U.S. population (although sample weights were used to improve the extent to which the results represent the U.S. population) and relatively small size, this study provides the first reference range of human internal dose levels of BPA and NP in a demographically diverse human population.
                Bookmark

                Author and article information

                Journal
                Int J Endocrinol
                Int J Endocrinol
                IJE
                International Journal of Endocrinology
                Hindawi Publishing Corporation
                1687-8337
                1687-8345
                2012
                28 November 2012
                : 2012
                : 598180
                Affiliations
                1Department of Epidemiology, West Virginia University School of Public Health, P.O. Box 9190, Morgantown, WV 26506-9190, USA
                2Department of Pharmaceutical Systems and Policy, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
                Author notes

                Academic Editor: Mario Maggi

                Article
                10.1155/2012/598180
                3515897
                23251154
                dfd4e3b1-199f-4d2a-8164-88b661c965c0
                Copyright © 2012 Srinivas Teppala et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 August 2012
                : 29 October 2012
                Categories
                Research Article

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article