6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brain Delivery of IGF1R5, a Single-Domain Antibody Targeting Insulin-like Growth Factor-1 Receptor

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability of drugs and therapeutic antibodies to reach central nervous system (CNS) targets is greatly diminished by the blood–brain barrier (BBB). Receptor-mediated transcytosis (RMT), which is responsible for the transport of natural protein ligands across the BBB, was identified as a way to increase drug delivery to the brain. In this study, we characterized IGF1R5, which is a single-domain antibody (sdAb) that binds to insulin-like growth factor-1 receptor (IGF1R) at the BBB, as a ligand that triggers RMT and could deliver cargo molecules that otherwise do not cross the BBB. Surface plasmon resonance binding analyses demonstrated the species cross-reactivity of IGF1R5 toward IGF1R from multiple species. To overcome the short serum half-life of sdAbs, we fused IGF1R5 to the human (hFc) or mouse Fc domain (mFc). IGF1R5 in both N- and C-terminal mFc fusion showed enhanced transmigration across a rat BBB model (SV-ARBEC) in vitro. Increased levels of hFc-IGF1R5 in the cerebrospinal fluid and vessel-depleted brain parenchyma fractions further confirmed the ability of IGF1R5 to cross the BBB in vivo. We next tested whether this carrier was able to ferry a pharmacologically active payload across the BBB by measuring the hypothermic and analgesic properties of neurotensin and galanin, respectively. The fusion of IGF1R5-hFc to neurotensin induced a dose-dependent reduction in the core temperature. The reversal of hyperalgesia by galanin that was chemically linked to IGF1R5-mFc was demonstrated using the Hargreaves model of inflammatory pain. Taken together, our results provided a proof of concept that appropriate antibodies, such as IGF1R5 against IGF1R, are suitable as RMT carriers for the delivery of therapeutic cargos for CNS applications.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          The blood-brain barrier: bottleneck in brain drug development.

          The blood-brain barrier (BBB) is formed by the brain capillary endothelium and excludes from the brain approximately 100% of large-molecule neurotherapeutics and more than 98% of all small-molecule drugs. Despite the importance of the BBB to the neurotherapeutics mission, the BBB receives insufficient attention in either academic neuroscience or industry programs. The combination of so little effort in developing solutions to the BBB problem, and the minimal BBB transport of the majority of all potential CNS drugs, leads predictably to the present situation in neurotherapeutics, which is that there are few effective treatments for the majority of CNS disorders. This situation can be reversed by an accelerated effort to develop a knowledge base in the fundamental transport properties of the BBB, and the molecular and cellular biology of the brain capillary endothelium. This provides the platform for CNS drug delivery programs, which should be developed in parallel with traditional CNS drug discovery efforts in the molecular neurosciences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor.

            Receptor-mediated transcytosis across the blood-brain barrier (BBB) may be a useful way to transport therapeutics into the brain. Here we report that transferrin (Tf)-containing gold nanoparticles can reach the brain parenchyma from systemic administration in mice through a receptor-mediated transcytosis pathway. This transport is aided by tuning the nanoparticle avidity to Tf receptor (TfR), which is correlated with nanoparticle size and total amount of Tf decorating the nanoparticle surface. Nanoparticles of both 45 nm and 80 nm diameter reach the brain parenchyma, and their accumulation there (visualized by silver enhancement light microscopy in combination with transmission electron microscopy imaging) is observed to be dependent on Tf content (avidity); nanoparticles with large amounts of Tf remain strongly attached to brain endothelial cells, whereas those with less Tf are capable of both interacting with TfR on the luminal side of the BBB and detaching from TfR on the brain side of the BBB. The requirement of proper avidity for nanoparticles to reach the brain parenchyma is consistent with recent behavior observed with transcytosing antibodies that bind to TfR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blood-brain barrier transport of therapeutics via receptor-mediation.

              Drug delivery to the brain is hindered by the presence of the blood-brain barrier (BBB). Although the BBB restricts the passage of many substances, it is actually selectively permeable to nutrients necessary for healthy brain function. To accomplish the task of nutrient transport, the brain endothelium is endowed with a diverse collection of molecular transport systems. One such class of transport system, known as a receptor-mediated transcytosis (RMT), employs the vesicular trafficking machinery of the endothelium to transport substrates between blood and brain. If appropriately targeted, RMT systems can also be used to shuttle a wide range of therapeutics into the brain in a noninvasive manner. Over the last decade, there have been significant developments in the arena of RMT-based brain drug transport, and this review will focus on those approaches that have been validated in an in vivo setting.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                PHARK5
                Pharmaceutics
                Pharmaceutics
                MDPI AG
                1999-4923
                July 2022
                July 12 2022
                : 14
                : 7
                : 1452
                Article
                10.3390/pharmaceutics14071452
                35890347
                df1e19d7-10d1-409f-9ba9-6b0a6c1b3ec5
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article