1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Covariance Connectivity of Gray and White Matter in Olfactory-Related Brain Regions in Parkinson’s Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Before the onset of motor symptoms, Parkinson’s disease (PD) involves dysfunction of the anterior olfactory nucleus and olfactory bulb, causing olfactory disturbance, commonly resulting in hyposmia in the early stages of PD. Accumulating evidence has shown that blood oxygen level dependent (BOLD) signals in white matter are altered by olfactory disorders and related stimuli, and the signal changes in brain white matter pathways show a certain degree of specificity, which can reflect changes of early olfactory dysfunction in Parkinson’s disease. In this study, we apply the functional covariance connectivity (FCC) method to decode FCC of gray and white matter in olfactory-related brain regions in Parkinson’s disease. Our results show that the dorsolateral prefrontal, anterior entorhinal cortex and fronto-orbital cortices in the gray matter have abnormal connectivity with the posterior corona radiata and superior corona radiata in white matter in patients with Parkinson’s hyposmia. The functional covariance connection strength (FCS) of the right dorsolateral prefrontal cortex and white matter, and the covariance connection strength of the left superior corona radiata and gray matter function have potential diagnostic value. These results demonstrate that alterations in FCC of gray and white matter in olfactory-related brain regions can reflect the change of olfactory function in the early stages of Parkinson’s disease, indicating that it could be a potential neuroimaging marker for early diagnosis.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          MDS clinical diagnostic criteria for Parkinson's disease.

          This document presents the Movement Disorder Society Clinical Diagnostic Criteria for Parkinson's disease (PD). The Movement Disorder Society PD Criteria are intended for use in clinical research but also may be used to guide clinical diagnosis. The benchmark for these criteria is expert clinical diagnosis; the criteria aim to systematize the diagnostic process, to make it reproducible across centers and applicable by clinicians with less expertise in PD diagnosis. Although motor abnormalities remain central, increasing recognition has been given to nonmotor manifestations; these are incorporated into both the current criteria and particularly into separate criteria for prodromal PD. Similar to previous criteria, the Movement Disorder Society PD Criteria retain motor parkinsonism as the core feature of the disease, defined as bradykinesia plus rest tremor or rigidity. Explicit instructions for defining these cardinal features are included. After documentation of parkinsonism, determination of PD as the cause of parkinsonism relies on three categories of diagnostic features: absolute exclusion criteria (which rule out PD), red flags (which must be counterbalanced by additional supportive criteria to allow diagnosis of PD), and supportive criteria (positive features that increase confidence of the PD diagnosis). Two levels of certainty are delineated: clinically established PD (maximizing specificity at the expense of reduced sensitivity) and probable PD (which balances sensitivity and specificity). The Movement Disorder Society criteria retain elements proven valuable in previous criteria and omit aspects that are no longer justified, thereby encapsulating diagnosis according to current knowledge. As understanding of PD expands, the Movement Disorder Society criteria will need continuous revision to accommodate these advances.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

            Summary Background Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. Methods We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. Findings Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable). Interpretation Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. Funding Bill & Melinda Gates Foundation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Parkinson's disease.

              Parkinson's disease is a neurological disorder with evolving layers of complexity. It has long been characterised by the classical motor features of parkinsonism associated with Lewy bodies and loss of dopaminergic neurons in the substantia nigra. However, the symptomatology of Parkinson's disease is now recognised as heterogeneous, with clinically significant non-motor features. Similarly, its pathology involves extensive regions of the nervous system, various neurotransmitters, and protein aggregates other than just Lewy bodies. The cause of Parkinson's disease remains unknown, but risk of developing Parkinson's disease is no longer viewed as primarily due to environmental factors. Instead, Parkinson's disease seems to result from a complicated interplay of genetic and environmental factors affecting numerous fundamental cellular processes. The complexity of Parkinson's disease is accompanied by clinical challenges, including an inability to make a definitive diagnosis at the earliest stages of the disease and difficulties in the management of symptoms at later stages. Furthermore, there are no treatments that slow the neurodegenerative process. In this Seminar, we review these complexities and challenges of Parkinson's disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                04 March 2022
                2022
                : 16
                : 853061
                Affiliations
                [1] 1Department of Neurology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University , Suzhou, China
                [2] 2Department of Neurology, Gusu School, Nanjing Medical University , Suzhou, China
                [3] 3Department of Neurology, Guanyun People’s Hospital , Lianyungang, China
                [4] 4Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University , Lianyungang, China
                [5] 5Department of Radiology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University , Suzhou, China
                [6] 6School of Biomedical Engineering, ShanghaiTech University , Shanghai, China
                Author notes

                Edited by: Jiaojian Wang, University of Electronic Science and Technology of China, China

                Reviewed by: Peng Yang, Shenzhen University, China; Zening Fu, Georgia State University, United States

                *Correspondence: Zenglin Cai, caizengling@ 123456hotmail.com

                These authors have contributed equally to this work

                This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2022.853061
                8930839
                35310108
                dedb7034-c29c-46f2-bc87-4eb7de721455
                Copyright © 2022 Wang, Wei, Du, Yan, Li, Wu, Zhu, Wang, Cai and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 January 2022
                : 14 February 2022
                Page count
                Figures: 7, Tables: 2, Equations: 1, References: 65, Pages: 12, Words: 8630
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Award ID: 82001160
                Funded by: Key Laboratory in Science and Technology Development Project of Suzhou, doi 10.13039/100016086;
                Award ID: LCZX202029
                Award ID: SLT202001
                Award ID: SS2019048
                Funded by: Lianyungang Science and Technology Bureau, doi 10.13039/501100009159;
                Award ID: Lkxyb2111
                Funded by: Six Talent Peaks Project in Jiangsu Province, doi 10.13039/501100010014;
                Award ID: SWYY-017
                Categories
                Neuroscience
                Original Research

                Neurosciences
                parkinson’s disease,resting state fmri,gray matter,white matter,hyposmia,functional covariance connectivity

                Comments

                Comment on this article