70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Physical Activity and Inactivity on Muscle Fatigue

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this review was to examine the mechanisms by which physical activity and inactivity modify muscle fatigue. It is well known that acute or chronic increases in physical activity result in structural, metabolic, hormonal, neural, and molecular adaptations that increase the level of force or power that can be sustained by a muscle. These adaptations depend on the type, intensity, and volume of the exercise stimulus, but recent studies have highlighted the role of high intensity, short-duration exercise as a time-efficient method to achieve both anaerobic and aerobic/endurance type adaptations. The factors that determine the fatigue profile of a muscle during intense exercise include muscle fiber composition, neuromuscular characteristics, high energy metabolite stores, buffering capacity, ionic regulation, capillarization, and mitochondrial density. Muscle fiber-type transformation during exercise training is usually toward the intermediate type IIA at the expense of both type I and IIx myosin heavy-chain isoforms. High-intensity training results in increases of both glycolytic and oxidative enzymes, muscle capillarization, improved phosphocreatine resynthesis and regulation of K +, H +, and lactate ions. Decreases of the habitual activity level due to injury or sedentary lifestyle result in partial or even compete reversal of the adaptations due to previous training, manifested by reductions in fiber cross-sectional area, decreased oxidative capacity, and capillarization. Complete immobilization due to injury results in markedly decreased force output and fatigue resistance. Muscle unloading reduces electromyographic activity and causes muscle atrophy and significant decreases in capillarization and oxidative enzymes activity. The last part of the review discusses the beneficial effects of intermittent high-intensity exercise training in patients with different health conditions to demonstrate the powerful effect of exercise on health and well being.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance.

          Brief, intense exercise training may induce metabolic and performance adaptations comparable to traditional endurance training. However, no study has directly compared these diverse training strategies in a standardized manner. We therefore examined changes in exercise capacity and molecular and cellular adaptations in skeletal muscle after low volume sprint-interval training (SIT) and high volume endurance training (ET). Sixteen active men (21 +/- 1 years, ) were assigned to a SIT or ET group (n = 8 each) and performed six training sessions over 14 days. Each session consisted of either four to six repeats of 30 s 'all out' cycling at approximately 250% with 4 min recovery (SIT) or 90-120 min continuous cycling at approximately 65% (ET). Training time commitment over 2 weeks was approximately 2.5 h for SIT and approximately 10.5 h for ET, and total training volume was approximately 90% lower for SIT versus ET ( approximately 630 versus approximately 6500 kJ). Training decreased the time required to complete 50 and 750 kJ cycling time trials, with no difference between groups (main effects, P
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human muscle metabolism during intermittent maximal exercise.

            Eight male subjects volunteered to take part in this study. The exercise protocol consisted of ten 6-s maximal sprints with 30 s of recovery between each sprint on a cycle ergometer. Needle biopsy samples were taken from the vastus lateralis muscle before and after the first sprint and 10 s before and immediately after the tenth sprint. The energy required to sustain the high mean power output (MPO) that was generated over the first 6-s sprint (870.0 +/- 159.2 W) was provided by an equal contribution from phosphocreatine (PCr) degradation and anaerobic glycolysis. Indeed, within the first 6-s bout of maximal exercise PCr concentration had fallen by 57% and muscle lactate concentration had increased to 28.6 mmol/kg dry wt, confirming significant glycolytic activity. However, in the tenth sprint there was no change in muscle lactate concentration even though MPO was reduced only to 73% of that generated in the first sprint. This reduced glycogenolysis occurred despite the high plasma epinephrine concentration of 5.1 +/- 1.5 nmol/l after sprint 9. In face of a considerable reduction in the contribution of anaerobic glycogenolysis to ATP production, it was suggested that, during the last sprint, power output was supported by energy that was mainly derived from PCr degradation and an increased aerobic metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aerobic endurance training improves soccer performance.

              The aim of the present study was to study the effects of aerobic training on performance during soccer match and soccer specific tests. Nineteen male elite junior soccer players, age 18.1 +/- 0.8 yr, randomly assigned to the training group (N = 9) and the control group (N = 10) participated in the study. The specific aerobic training consisted of interval training, four times 4 min at 90-95% of maximal heart rate, with a 3-min jog in between, twice per week for 8 wk. Players were monitored by video during two matches, one before and one after training. In the training group: a) maximal oxygen uptake (VO2max) increased from 58.1 +/- 4.5 mL x kg(-1) x min(-1) to 64.3 +/- 3.9 mL x kg(-1) x min(-1) (P < 0.01); b) lactate threshold improved from 47.8 +/- 5.3 mL x kg(-1) x min(-1) to 55.4 +/- 4.1 mL x kg(-1) x min(-1) (P < 0.01); c) running economy was also improved by 6.7% (P < 0.05); d) distance covered during a match increased by 20% in the training group (P < 0.01); e) number of sprints increased by 100% (P < 0.01); f) number of involvements with the ball increased by 24% (P < 0.05); g) the average work intensity during a soccer match, measured as percent of maximal heart rate, was enhanced from 82.7 +/- 3.4% to 85.6 +/- 3.1% (P < 0.05); and h) no changes were found in maximal vertical jumping height, strength, speed, kicking velocity, kicking precision, or quality of passes after the training period. The control group showed no changes in any of the tested parameters. Enhanced aerobic endurance in soccer players improved soccer performance by increasing the distance covered, enhancing work intensity, and increasing the number of sprints and involvements with the ball during a match.
                Bookmark

                Author and article information

                Journal
                Front Physiol
                Front Physiol
                Front. Physio.
                Frontiers in Physiology
                Frontiers Research Foundation
                1664-042X
                18 May 2012
                2012
                : 3
                : 142
                Affiliations
                [1] 1simpleDepartment of Physical Education and Sports Science, University of Athens Athens, Greece
                Author notes

                Edited by: Christina Karatzaferi, University of Thessaly, Greece

                Reviewed by: Bruno Bastide, University of Lille Nord de France, University of Lille 1, France; Norbert Maassen, University Hannover/Medical School Hannover, Germany

                *Correspondence: Gregory C. Bogdanis, Department of Physical Education and Sports Science, University of Athens, 41 Ethnikis Antistasis Street, Dafne, 172 37 Athens, Greece. e-mail: gbogdanis@ 123456phed.uoa.gr

                This article was submitted to Frontiers in Striated Muscle Physiology, a specialty of Frontiers in Physiology.

                Article
                10.3389/fphys.2012.00142
                3355468
                22629249
                de707f5e-1f7d-4dbd-861a-d54c3eb0a1b0
                Copyright © 2012 Bogdanis.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

                History
                : 20 January 2012
                : 27 April 2012
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 150, Pages: 15, Words: 15976
                Categories
                Physiology
                Review Article

                Anatomy & Physiology
                training,aerobic training,high-intensity exercise,repeated sprints
                Anatomy & Physiology
                training, aerobic training, high-intensity exercise, repeated sprints

                Comments

                Comment on this article