Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      How to e-mental health: a guideline for researchers and practitioners using digital technology in the context of mental health

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research.

          Suicidal thoughts and behaviors (STBs) are major public health problems that have not declined appreciably in several decades. One of the first steps to improving the prevention and treatment of STBs is to establish risk factors (i.e., longitudinal predictors). To provide a summary of current knowledge about risk factors, we conducted a meta-analysis of studies that have attempted to longitudinally predict a specific STB-related outcome. This included 365 studies (3,428 total risk factor effect sizes) from the past 50 years. The present random-effects meta-analysis produced several unexpected findings: across odds ratio, hazard ratio, and diagnostic accuracy analyses, prediction was only slightly better than chance for all outcomes; no broad category or subcategory accurately predicted far above chance levels; predictive ability has not improved across 50 years of research; studies rarely examined the combined effect of multiple risk factors; risk factors have been homogenous over time, with 5 broad categories accounting for nearly 80% of all risk factor tests; and the average study was nearly 10 years long, but longer studies did not produce better prediction. The homogeneity of existing research means that the present meta-analysis could only speak to STB risk factor associations within very narrow methodological limits-limits that have not allowed for tests that approximate most STB theories. The present meta-analysis accordingly highlights several fundamental changes needed in future studies. In particular, these findings suggest the need for a shift in focus from risk factors to machine learning-based risk algorithms. (PsycINFO Database Record
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mobile App Rating Scale: A New Tool for Assessing the Quality of Health Mobile Apps

            Background The use of mobile apps for health and well being promotion has grown exponentially in recent years. Yet, there is currently no app-quality assessment tool beyond “star”-ratings. Objective The objective of this study was to develop a reliable, multidimensional measure for trialling, classifying, and rating the quality of mobile health apps. Methods A literature search was conducted to identify articles containing explicit Web or app quality rating criteria published between January 2000 and January 2013. Existing criteria for the assessment of app quality were categorized by an expert panel to develop the new Mobile App Rating Scale (MARS) subscales, items, descriptors, and anchors. There were sixty well being apps that were randomly selected using an iTunes search for MARS rating. There were ten that were used to pilot the rating procedure, and the remaining 50 provided data on interrater reliability. Results There were 372 explicit criteria for assessing Web or app quality that were extracted from 25 published papers, conference proceedings, and Internet resources. There were five broad categories of criteria that were identified including four objective quality scales: engagement, functionality, aesthetics, and information quality; and one subjective quality scale; which were refined into the 23-item MARS. The MARS demonstrated excellent internal consistency (alpha = .90) and interrater reliability intraclass correlation coefficient (ICC = .79). Conclusions The MARS is a simple, objective, and reliable tool for classifying and assessing the quality of mobile health apps. It can also be used to provide a checklist for the design and development of new high quality health apps.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book Chapter: not found

              Thematic analysis.

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Mental Health
                Nat. Mental Health
                Springer Science and Business Media LLC
                2731-6076
                August 2023
                August 07 2023
                : 1
                : 8
                : 542-554
                Article
                10.1038/s44220-023-00085-1
                ddf64571-f128-4c9b-9172-4dcd867191a8
                © 2023

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,167

                Cited by16

                Most referenced authors1,555