23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Membrane and organelle dynamics during cell division

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references201

          • Record: found
          • Abstract: not found
          • Article: not found

          Understanding the diversity of membrane lipid composition

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial dynamics and inheritance during cell division, development and disease.

            During cell division, it is critical to properly partition functional sets of organelles to each daughter cell. The partitioning of mitochondria shares some common features with that of other organelles, particularly in the use of interactions with cytoskeletal elements to facilitate delivery to the daughter cells. However, mitochondria have unique features - including their own genome and a maternal mode of germline transmission - that place additional demands on this process. Consequently, mechanisms have evolved to regulate mitochondrial segregation during cell division, oogenesis, fertilization and tissue development, as well as to ensure the integrity of these organelles and their DNA, including fusion-fission dynamics, organelle transport, mitophagy and genetic selection of functional genomes. Defects in these processes can lead to cell and tissue pathologies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A class of membrane proteins shaping the tubular endoplasmic reticulum.

              How is the characteristic shape of a membrane bound organelle achieved? We have used an in vitro system to address the mechanism by which the tubular network of the endoplasmic reticulum (ER) is generated and maintained. Based on the inhibitory effect of sulfhydryl reagents and antibodies, network formation in vitro requires the integral membrane protein Rtn4a/NogoA, a member of the ubiquitous reticulon family. Both in yeast and mammalian cells, the reticulons are largely restricted to the tubular ER and are excluded from the continuous sheets of the nuclear envelope and peripheral ER. Upon overexpression, the reticulons form tubular membrane structures. The reticulons interact with DP1/Yop1p, a conserved integral membrane protein that also localizes to the tubular ER. These proteins share an unusual hairpin topology in the membrane. The simultaneous absence of the reticulons and Yop1p in S. cerevisiae results in disrupted tubular ER. We propose that these "morphogenic" proteins partition into and stabilize highly curved ER membrane tubules.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Molecular Cell Biology
                Nat Rev Mol Cell Biol
                Springer Science and Business Media LLC
                1471-0072
                1471-0080
                February 7 2020
                Article
                10.1038/s41580-019-0208-1
                32034394
                dce9b95f-04ab-465b-a334-4bb0da71bbc8
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article