49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Physiological properties of mouse skin sensory neurons recorded intracellularly in vivo: temperature effects on somal membrane properties.

      Journal of Neurophysiology
      Age Factors, Analysis of Variance, Animals, Animals, Newborn, Biotin, analogs & derivatives, diagnostic use, Efferent Pathways, physiology, Female, Ganglia, Spinal, cytology, In Vitro Techniques, Male, Membrane Potentials, radiation effects, Mice, Neurons, Afferent, Physical Stimulation, methods, Reaction Time, Skin, innervation, Temperature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent combined analyses of the structural, functional, and molecular attributes of individual skin sensory neurons using semi-intact in vitro preparations from mice have provided a wealth of novel insights into nociceptor biology. How these findings translate to more natural conditions nevertheless remains unresolved. Toward this end, intracellular recordings were obtained from 362 physiologically identified dorsal root ganglion (DRG) neurons in a new in vivo mouse preparation developed for combined structure/function analyses of individual skin sensory neurons. Recordings were conducted at thoracic levels in adult decorticate mice for comparison with in vitro findings from the same trunk region. In all, 270 neurons were recorded at DRG temperatures tightly regulated at normal core values to establish a baseline and 137 skin sensory neurons were included in detailed analyses of somal properties for comparisons with similar data obtained under reduced temperatures mirroring in vitro conditions. Recovery of Neurobiotin-labeled central projections was crucial for verifying perceived afferent identity of certain neurons. Further, profound temperature dependency was seen across diverse physiological properties. Indeed, the broad, inflected somal spikes normally viewed as diagnostic of myelinated nociceptors were found to be a product of reduced temperatures and were not present at normal core values. Moreover, greater complexity was observed peripherally in the mechanical and thermal sensitivity profile of nociceptive and nonnociceptive populations than that seen under in vitro conditions. This novel in vivo preparation therefore holds considerable promise for future analyses of nociceptor function and plasticity in normal and transgenic models of pain mechanisms.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content30

          Cited by15