6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Advance of Liposome Nanoparticles for Nucleic Acid Therapy

      , , , ,
      Pharmaceutics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene therapy, as an emerging therapeutic approach, has shown remarkable advantages in the treatment of some major diseases. With the deepening of genomics research, people have gradually realized that the emergence and development of many diseases are related to genetic abnormalities. Therefore, nucleic acid drugs are gradually becoming a new boon in the treatment of diseases (especially tumors and genetic diseases). It is conservatively estimated that the global market of nucleic acid drugs will exceed $20 billion by 2025. They are simple in design, mature in synthesis, and have good biocompatibility. However, the shortcomings of nucleic acid, such as poor stability, low bioavailability, and poor targeting, greatly limit the clinical application of nucleic acid. Liposome nanoparticles can wrap nucleic acid drugs in internal cavities, increase the stability of nucleic acid and prolong blood circulation time, thus improving the transfection efficiency. This review focuses on the recent advances and potential applications of liposome nanoparticles modified with nucleic acid drugs (DNA, RNA, and ASO) and different chemical molecules (peptides, polymers, dendrimers, fluorescent molecules, magnetic nanoparticles, and receptor targeting molecules). The ability of liposome nanoparticles to deliver nucleic acid drugs is also discussed in detail. We hope that this review will help researchers design safer and more efficient liposome nanoparticles, and accelerate the application of nucleic acid drugs in gene therapy.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Metazoan MicroRNAs

          MicroRNAs (miRNAs) are ∼22 nt RNAs that direct posttranscriptional repression of mRNA targets in diverse eukaryotic lineages. In humans and other mammals, these small RNAs help sculpt the expression of most mRNAs. This article reviews advances in our understanding of the defining features of metazoan miRNAs and their biogenesis, genomics, and evolution. It then reviews how metazoan miRNAs are regulated, how they recognize and cause repression of their targets, and the biological functions of this repression, with a compilation of knockout phenotypes that shows that important biological functions have been identified for most of the broadly conserved miRNAs of mammals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reading, writing and erasing mRNA methylation

            RNA methylation to form N6-methyladenosine (m6A) in mRNA accounts for the most abundant mRNA internal modification and has emerged as a widespread regulatory mechanism that controls gene expression in diverse physiological processes. Transcriptome-wide m6A mapping has revealed the distribution and pattern of m6A in cellular RNAs, referred to as the epitranscriptome. These maps have revealed the specific mRNAs that are regulated by m6A, providing mechanistic links connecting m6A to cellular differentiation, cancer progression and other processes. The effects of m6A on mRNA are mediated by an expanding list of m6A readers and m6A writer-complex components, as well as potential erasers that currently have unclear relevance to m6A prevalence in the transcriptome. Here we review new and emerging methods to characterize and quantify the epitranscriptome, and we discuss new concepts - in some cases, controversies - regarding our understanding of the mechanisms and functions of m6A readers, writers and erasers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA

              MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene-expression posttranscriptionally. MiRNA research in allergy is expanding because miRNAs are crucial regulators of gene expression and promising candidates for biomarker development. MiRNA mimics and miRNA inhibitors currently in preclinical development have shown promise as novel therapeutic agents. Multiple technological platforms have been developed for miRNA isolation, miRNA quantitation, miRNA profiling, miRNA target detection, and modulating miRNA levels in vitro and in vivo. Here we will review the major technological platforms with consideration given for the advantages and disadvantages of each platform.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                PHARK5
                Pharmaceutics
                Pharmaceutics
                MDPI AG
                1999-4923
                January 2023
                January 04 2023
                : 15
                : 1
                : 178
                Article
                10.3390/pharmaceutics15010178
                36678807
                dc321455-f1c5-48e0-9e96-f59551c431a6
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article