2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Contribution of In Vivo Mammalian Studies to the Knowledge of Adverse Effects of Radiofrequency Radiation on Human Health

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The proliferation of cellular antennas and other radiofrequency radiation (RFR) generating devices of the last decades has led to more and more concerns about the potential health effects from RFR exposure. Since the 2011 classification as a possible carcinogen by the International Agency for Research on Cancer (IARC), more experimental studies have been published that support a causal association between RFR exposure and health hazards. As regard cancer risk, two long-term experimental studies have been recently published by the US National Toxicology Program (NTP) and the Italian Ramazzini Institute (RI). Despite important experimental differences, both studies found statistically significant increases in the development of the same type of very rare glial malignant tumors. In addition to carcinogenicity, reproductive organs might be particularly exposed, as well as sensitive to RFR. In this work, we reviewed the currently available evidence from in vivo studies on carcinogenicity and reproductive toxicity studies in order to summarize the contribution of experimental research to the prevention of the adverse effects of RFR on human health.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: not found
          • Article: not found

          Carcinogenicity of radiofrequency electromagnetic fields.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission

            In 2011, IARC classified radiofrequency radiation (RFR) as possible human carcinogen (Group 2B). According to IARC, animals studies, as well as epidemiological ones, showed limited evidence of carcinogenicity. In 2016, the NTP published the first results of its long-term bioassays on near field RFR, reporting increased incidence of malignant glial tumors of the brain and heart Schwannoma in rats exposed to GSM - and CDMA - modulated cell phone RFR. The tumors observed in the NTP study are of the type similar to the ones observed in some epidemiological studies of cell phone users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline.

              Concern has arisen over human exposures to radio frequency electromagnetic radiation (RFEMR), including a recent report indicating that regular mobile phone use can negatively impact upon human semen quality. These effects would be particularly serious if the biological effects of RFEMR included the induction of DNA damage in male germ cells. In this study, mice were exposed to 900 MHz RFEMR at a specific absorption rate of approximately 90 mW/kg inside a waveguide for 7 days at 12 h per day. Following exposure, DNA damage to caudal epididymal spermatozoa was assessed by quantitative PCR (QPCR) as well as alkaline and pulsed-field gel electrophoresis. The treated mice were overtly normal and all assessment criteria, including sperm number, morphology and vitality were not significantly affected. Gel electrophoresis revealed no gross evidence of increased single- or double-DNA strand breakage in spermatozoa taken from treated animals. However, a detailed analysis of DNA integrity using QPCR revealed statistically significant damage to both the mitochondrial genome (p < 0.05) and the nuclear beta-globin locus (p < 0.01). This study suggests that while RFEMR does not have a dramatic impact on male germ cell development, a significant genotoxic effect on epididymal spermatozoa is evident and deserves further investigation.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                12 September 2019
                September 2019
                : 16
                : 18
                : 3379
                Affiliations
                Cesare Maltoni Cancer Research Center, Ramazzini Institute, Castello di Bentivoglio, via Saliceto 3, Bentivoglio, 40010 Bologna, Italy; falcionil@ 123456ramazzini.it (L.F.); mandriolid@ 123456ramazzini.it (D.M.); bual@ 123456ramazzini.it (L.B.); belpoggif@ 123456ramazzini.it (F.B.)
                Author notes
                [* ]Correspondence: vornolia@ 123456ramazzini.it
                Article
                ijerph-16-03379
                10.3390/ijerph16183379
                6765993
                31547363
                dbfde153-60ff-4a66-ab8b-810b859e115c
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 July 2019
                : 10 September 2019
                Categories
                Review

                Public health
                radiofrequency radiation,in vivo experimental studies,carcinogenicity,reproductive/developmental toxicity

                Comments

                Comment on this article