3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNMT3A transcriptionally downregulated by KLF5 alleviates LPS-induced inflammatory response and promotes osteogenic differentiation in hPDLSCs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract Background and objective Periodontitis is an inflammatory disease typically characterized by the destruction of periodontal tissues and complicated etiology. DNA methyltransferase 3A (DNMT3A) has been implicated in possessing pro-inflammatory properties. This study sought to explore the role of DNMT3A in periodontitis and its relevant mechanism. Methodology Lipopolysaccharide (LPS) was used to induce inflammation in human periodontal ligament stem cells (hPDLSCs). DNMT3A and KLF5 expressions were detected using RT-qPCR and western blot. The levels of inflammatory cytokines and inflammation-related proteins were detected using ELISA and western blot. NF-κB p65 expression was detected using immunofluorescence (IF) assay, while osteogenic differentiation was assessed using ALP assay and ARS staining. Western blot was used to measure the protein contents associated with osteogenic differentiation. DNMT3A activity was detected using luciferase report assay and chromatin immunoprecipitation (ChIP) was used to verify the interaction between KLF5 and DNMT3A. Results DNMT3A expression increased in LPS-induced hPDLSCs. Silencing DNMT3A suppressed the LPS-induced inflammation in hPDLSCs, while promoting osteogenic differentiation. It was also found that transcriptional factor KLF5 could bind to DNMT3A promoters and regulate DNMT3A expression. Rescue experiments showed that KLF5 interference partially counteracted the inhibitory impacts of DNMT3A deficiency on inflammation and the promotive effects on osteogenic differentiation in LPS-induced hPDLSCs. Conclusion DNMT3A, when transcriptionally downregulated by KLF5, could alleviate LPS-challenged inflammatory responses and facilitate osteogenic differentiation in hPDLSCs.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Investigation of multipotent postnatal stem cells from human periodontal ligament.

          Periodontal diseases that lead to the destruction of periodontal tissues--including periodontal ligament (PDL), cementum, and bone--are a major cause of tooth loss in adults and are a substantial public-health burden worldwide. PDL is a specialised connective tissue that connects cementum and alveolar bone to maintain and support teeth in situ and preserve tissue homoeostasis. We investigated the notion that human PDL contains stem cells that could be used to regenerate periodontal tissue. PDL tissue was obtained from 25 surgically extracted human third molars and used to isolate PDL stem cells (PDLSCs) by single-colony selection and magnetic activated cell sorting. Immunohistochemical staining, RT-PCR, and northern and western blot analyses were used to identify putative stem-cell markers. Human PDLSCs were transplanted into immunocompromised mice (n=12) and rats (n=6) to assess capacity for tissue regeneration and periodontal repair. Findings PDLSCs expressed the mesenchymal stem-cell markers STRO-1 and CD146/MUC18. Under defined culture conditions, PDLSCs differentiated into cementoblast-like cells, adipocytes, and collagen-forming cells. When transplanted into immunocompromised rodents, PDLSCs showed the capacity to generate a cementum/PDL-like structure and contribute to periodontal tissue repair. Our findings suggest that PDL contains stem cells that have the potential to generate cementum/PDL-like tissue in vivo. Transplantation of these cells, which can be obtained from an easily accessible tissue resource and expanded ex vivo, might hold promise as a therapeutic approach for reconstruction of tissues destroyed by periodontal diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Periodontitis: facts, fallacies and the future.

            This volume of Periodontology 2000 represents the 25th anniversary of the Journal, and uses the occasion to assess important advancements in periodontology over the past quarter-century as well as the hurdles that remain. Periodontitis is defined by pathologic loss of the periodontal ligament and alveolar bone. The disease involves complex dynamic interactions among active herpesviruses, specific bacterial pathogens and destructive immune responses. Periodontal diagnostics is currently based on clinical rather than etiologic criteria, and provides limited therapeutic guidance. Periodontal causative treatment consists of scaling, antiseptic rinses and occasionally systemic antibiotics, and surgical intervention has been de-emphasized, except perhaps for the most advanced types of periodontitis. Plastic surgical therapy includes soft-tissue grafting to cover exposed root surfaces and bone grafting to provide support for implants. Dental implants are used to replace severely diseased or missing teeth, but implant overuse is of concern. The utility of laser treatment for periodontitis remains unresolved. Host modulation and risk-factor modification therapies may benefit select patient groups. Patient self-care is a critical part of periodontal health care, and twice-weekly oral rinsing with 0.10-0.25% sodium hypochlorite constitutes a valuable adjunct to conventional anti-plaque and anti-gingivitis treatments. A link between periodontal herpesviruses and systemic diseases is a strong biological plausibility. In summary, research during the past 25 years has significantly changed our concepts of periodontitis pathobiology and has produced more-effective and less-costly therapeutic options.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: Implication in disease and tissue regeneration

              Mesenchymal stem cells (MSCs) are considered as an attractive tool for tissue regeneration and possess a strong immunomodulatory ability. Dental tissue-derived MSCs can be isolated from different sources, such as the dental pulp, periodontal ligament, deciduous teeth, apical papilla, dental follicles and gingiva. According to numerous in vitro studies, the effect of dental MSCs on immune cells might depend on several factors, such as the experimental setting, MSC tissue source and type of immune cell preparation. Most studies have shown that the immunomodulatory activity of dental MSCs is strongly upregulated by activated immune cells. MSCs exert mostly immunosuppressive effects, leading to the dampening of immune cell activation. Thus, the reciprocal interaction between dental MSCs and immune cells represents an elegant mechanism that potentially contributes to tissue homeostasis and inflammatory disease progression. Although the immunomodulatory potential of dental MSCs has been extensively investigated in vitro, its role in vivo remains obscure. A few studies have reported that the MSCs isolated from inflamed dental tissues have a compromised immunomodulatory ability. Moreover, the expression of some immunomodulatory proteins is enhanced in periodontal disease and even shows some correlation with disease severity. MSC-based immunomodulation may play an essential role in the regeneration of different dental tissues. Therefore, immunomodulation-based strategies may be a very promising tool in regenerative dentistry.
                Bookmark

                Author and article information

                Journal
                jaos
                Journal of Applied Oral Science
                J. Appl. Oral Sci.
                Faculdade De Odontologia De Bauru - USP (Bauru, SP, Brazil )
                1678-7757
                1678-7765
                2024
                : 32
                : e20240268
                Affiliations
                [1] Jiangsu orgnameSuzhou Stomatology Hospital orgdiv1Department of Pediatric Dentistry China
                [2] Shanghai Shanghai orgnameFudan University orgdiv1Department of Stomatology orgdiv2Minhang Hospital China
                Author information
                https://orcid.org/0009-0002-5458-8009
                https://orcid.org/0009-0001-0403-9602
                Article
                S1678-77572024000100458 S1678-7757(24)03200000458
                10.1590/1678-7757-2024-0268
                db47401d-24a8-4901-804f-3984dcb6cc4f

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 05 July 2024
                : 10 September 2024
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 41, Pages: 0
                Product

                SciELO Brazil

                Categories
                Original Article

                Osteogenic differentiation,Inflammation,KLF5,DNMT3A,Periodontitis

                Comments

                Comment on this article